
Although we have used the polymerization
of recMoPrP(89–230) into amyloid fibrils to
generate prion infectivity, we hasten to add that
other �-rich forms of recMoPrP(89–230) may
also harbor infectivity. Preliminary results sug-
gest that preparations of �-oligomers formed
from recMoPrP(89–230) may also contain low
levels of prion infectivity (33). Such findings
emphasize the need to define optimal conditions
for prion formation in vitro under which high
levels of PrPSc can be generated. Moreover, pre-
vious difficulties in creating infectious prions in
vitro from recPrPs enriched for �-structure may
be due to the tendency of mammalian PrPs to
fold into biologically irrelevant �-rich isoforms
(3, 4, 11). In studies of fungal prions, the ease of
assaying infectivity (34) and the ability to study
millions of colonies made the creation of in vitro
infectivity from recombinant proteins more trac-
table (35–37). Whereas yeast prions form within
the cytoplasm (38), mammalian prions are
thought to be produced on the cell surface in
caveolae-like domains (39, 40).

From Tg mouse studies, it is well established
that templates improve the likelihood of forming
an infectious �-rich isoform (8, 12). In the stud-
ies reported here, we see evidence that seeded
amyloid fibrils exhibit shorter incubation times
than their unseeded progenitor (Fig. 1A). It re-
mains to be determined whether this is due to the
greater number of PrPSc molecules within seeded
fibrils relative to unseeded fibrils, or whether this
reflects strain differences.

Our results have important implications for
human health. The formation of prions from
recPrP demonstrates that PrPC is sufficient for
the spontaneous formation of prions; thus, no
exogenous agent is required for prions to form in
any mammal. Our findings provide an explana-
tion for sporadic Creutzfeldt-Jakob disease for
which the spontaneous formation of prions has
been hypothesized. Understanding sporadic
prion disease is particularly relevant to control-
ling the exposure of humans to bovine prions
(41). That bovine prions are pathogenic for hu-
mans is well documented; more than 150 teen-
agers and young adults have already died from
prion-tainted beef derived from cattle with bo-
vine spongiform encephalopathy (42). More-
over, the sporadic forms of Alzheimer’s and
Parkinson’s diseases as well as amyotrophic lat-
eral sclerosis and the frontal temporal dementias
are the most frequent forms of these age-
dependent disorders, as is the case for the prion
diseases. Important insights in the etiologic
events that feature in these more common
neurodegenerative disorders, all of which are
caused by the aberrant processing of proteins
in the nervous system, are likely to emerge as
more is learned about the molecular pathogen-
esis of the sporadic prion diseases.
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Host-to-Parasite Gene Transfer in
Flowering Plants: Phylogenetic
Evidence from Malpighiales

Charles C. Davis1* and Kenneth J. Wurdack2

Horizontal gene transfer (HGT) between sexually unrelated species has recently
been documented for higher plants, butmechanistic explanations for HGTs have
remained speculative. We show that a parasitic relationship may facilitate HGT
between flowering plants. The endophytic parasites Rafflesiaceae are placed in
the diverse order Malpighiales. Our multigene phylogenetic analyses of Mal-
pighiales show that mitochrodrial (matR) and nuclear loci (18S ribosomal DNA
and PHYC) place Rafflesiaceae in Malpighiales, perhaps near Ochnaceae/
Clusiaceae. Mitochondrial nad1B-C, however, groups them within Vitaceae,
near their obligate host Tetrastigma. These discordant phylogenetic hypotheses
strongly suggest that part of the mitochondrial genome in Rafflesiaceae was
acquired via HGT from their hosts.

Malpighiales are one of the most diverse
clades of flowering plants uncovered in re-
cent phylogenetic analyses. The order com-
prises 27 families (1) previously assigned to
13 different orders (2), including more than
16,000 species spanning tremendous mor-
phological and ecological diversity (3). Re-
cent surprising additions to Malpighiales are
the endophytic holoparasites Rafflesiaceae
(4), which lack leaves, stems, and roots, and

rely entirely on their host plants, species of
Tetrastigma (Vitaceae), for their nutrition.
Despite their extreme vegetative reduction,
they are unmistakable in flower, producing
the largest flowers in the world, which mimic
rotting flesh—an enticement to the carrion
flies that pollinate them (5).

Barkman et al. (4 ) used mitochondrial
(mt) matR sequences to place Raffle-
siaceae firmly with Malpighiales [100%
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bootstrap percentage (BP)]. Their use of a
single mt gene was appropriate in a family
that has resisted placement with standard
genetic loci. To further examine this place-
ment, we obtained sequences representing
all families of Malpighiales, all genera of
Rafflesiaceae, and numerous basal eudi-
cots for four loci from the mt and nuclear
genomes (6 ). Low-copy nuclear genes are
an underused resource for resolving the
placement of problematic taxa, and phyto-
chrome C (PHYC), as used here, has been
useful for revealing relationships within
Malpighiales (7 ).

Our phylogenetic analyses are summa-
rized in Fig. 1 (8). The tree created from the

matR and nuclear loci firmly (100% BP)
place Rafflesiaceae within Malpighiales. In
contrast, the mt locus nad1B-C suggests that
Rafflesiacecae are not members of Mal-
pighiales but belong (100% BP) in Vitaceae
near their host Tetrastigma. Each of these
mutually exclusive hypotheses cannot be at-
tributable to contamination (9), and each re-
ceives strong support from parsimony analy-
ses and from alternative topology tests.

Which of these conflicting hypotheses
reflect the true species affinities of Rafflesi-
aceae? Vitaceae possess several synapomor-
phies that are rare among angiosperms, includ-
ing sieve-tube plastids with starch and protein
inclusions, pearl glands, stamens opposite the
petals, and seeds with a cordlike raphe. If
Rafflesiaceae were embedded in Vitaceae, as
suggested by nad1B-C, we would expect spe-
cies to possess at least some of these characters,
but they do not (2, 3). A definitive malpighi-
alean sister group for Rafflesiaceae is unclear,
given our data. However, the closest relatives
suggested in the combined analysis (10),

Ochnaceae and Clusiaceae sensu lato, share
tenuinucellate ovules (among mostly crassinu-
cellate relatives) and staminal fusion with
Rafflesiaceae (2, 3).

The position of Rafflesiaceae based on
nad1B-C provides a new example of horizon-
tal gene transfer. If nad1B-C were vertically
transmitted, as we believe to be the case for
the other loci, we would expect Rafflesiaceae
to group with Malpighiales. Instead, phylo-
genetic evidence from nad1B-C suggests that
part of the mt genome in Rafflesiaceae orig-
inated from their hosts, Tetrastigma (either
stem or crown group members), and was
horizontally transferred to these obligate par-
asites. A similar horizontal gene transfer
(HGT) of nad1B-C was recently reported (11)
in seed plants, involving a transfer from an
asterid to Gnetum. And Bergthorsson et al. (12)
have documented several instances of mt HGT
between distantly related angiosperm groups.

The underlying mechanism for HGT be-
tween sexually unrelated plants, however, has
been elusive. Various pathogens have been
suggested as primary vector agents (11, 12).
Our study documents a case in which there is
no need to propose an intermediary vector for
HGT. In these plants, the transfer appears to
have been facilitated by the intimacy of the
association between the host and the endo-
phytic parasite, which lives its whole vegeta-
tive life as “an almost mycelial haustorial
system,” “ramifying and anastomosing
throughout the [tissues of the] host” (13).
This pattern may be an important mechanism
by which parasites assemble their genetic
architecture, and additional cases of HGT
should be sought among other endophytic
parasites and their hosts. It will also not be
surprising if reciprocal genetic transfers are
found to have occurred, from parasite to host.
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nad1B-CmatR, PHYC, 18SA BFig. 1. Two conflicting hypotheses
about the phylogenetic placement
of Rafflesiaceae. (A) The strict
consensus of 136 angiosperms for
combined mt matR and nuclear
(PHYC and ribosomal 18S) data
showing a well-supported (100%
BP) Malpighiales clade (in blue),
which includes all members of the
order sensu APG II (1) plus Raffle-
siaceae (in red; Rafflesia, Rhizan-
thes, and Sapria). (B) The strict
consensus of 147 angiosperms
for mt nad1B-C (the nad1 intron
2 and part of the adjacent exons
b and c) showing a well-supported
(100% BP) Malpighiales clade,
which includes all members of the
order except Rafflesiaceae. Raffle-
siaceae (Rafflesia and Sapria) are
strongly placed (100% BP) in the
basal eudicot family Vitaceae (in
yellow) near their host genus, Tet-
rastigma. The dashed line is the
hypothesized host/parasite HGT.
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KIF1A Alternately Uses Two
Loops to Bind Microtubules
Ryo Nitta,1 Masahide Kikkawa,1,2 Yasushi Okada,1

Nobutaka Hirokawa1*

Themotor protein kinesin moves alongmicrotubules, driven by adenosine triphos-
phate (ATP) hydrolysis. However, it remains unclear how kinesin converts the
chemical energy into mechanical movement. We report crystal structures of mo-
nomeric kinesin KIF1A with three transition-state analogs: adenylyl imidodiphos-
phate (AMP-PNP), adenosine diphosphate (ADP)–vanadate, and ADP-AlFx (alumi-
nofluoride complexes). These structures, together with known structures of the
ADP-bound state and the adenylyl-(�,�-methylene) diphosphate (AMP-PCP)–
bound state, show that kinesin uses two microtubule-binding loops in an alter-
nating manner to change its interaction with microtubules during the ATP hydro-
lysis cycle; loop L11 is extended in the AMP-PNP structure, whereas loop L12 is
extended in the ADP structure. ADP-vanadate displays an intermediate structure
in which a conformational change in two switch regions causes both loops to be
raised from the microtubule, thus actively detaching kinesin.

To move along microtubules, kinesins (1)
must alternate rapidly between tightly bound
and detached states. How both dimeric (2, 3)
and monomeric (4, 5) kinesins achieve this
remains unclear. Because the binding energy
in the strong-binding state [10 to 20 kBT (3,
4), where kB is the Boltzmann constant and T
is absolute temperature] is too large for rapid
spontaneous release, the energy for fast de-
tachment of kinesin from the microtubule
must come from a step of the ATP hydrolysis
cycle. Large change(s) in free energy are
expected to occur during four steps: ATP
binding, hydrolysis, phosphate release, and
ADP release. Both conventional kinesin and
KIF1A bind tightly to microtubules in the
nucleotide-free state and in the ATP-bound

state. In the ADP-bound state, conventional
kinesin is detached from microtubules,
whereas KIF1A is partially detached and dif-
fuses freely along the microtubule. This is
because loose binding of ADP-bound KIF1A
is supported by the KIF1 family–specific K-
loop at loop L12. A mutant KIF1A that lacks
the K-loop detaches from the microtubule in
the ADP-bound state, and the dissociation

constant markedly varies depending on the
type of bound nucleotide, as is true for con-
ventional kinesin (4). For historical reasons,
the tightly bound state is called the strong-
binding state, and the fully or partially de-
tached state is called the weak-binding state.
Recent work detected the phosphate release
from a mutant kinesin, which stalls before the
detached state (6, 7). This means that detach-
ment occurs just at or after the phosphate
release. Thus, the active process to detach
kinesin from the microtubule should occur at
the transition from the strong-binding state to
the weak-binding state.

The active detachment process can be de-
tected in KIF1A because of its property of
binding to the microtubule during adenosine
triphosphatase (ATPase) cycling. The apparent
dissociation constant of KIF1A in the presence
of ATP is the weighted average of the equilib-
rium dissociation constant of various interme-
diate states during the ATPase turnover.
Because the dissociation constant is not signif-
icantly different between two major inter-
mediate states, the AMP-PNP–bound and
ADP-bound states ( Table 1) (fig. S1) (8), the
apparent dissociation constant during the
ATPase turnover was not expected to be fun-
damentally different from these values. How-
ever, the apparent dissociation constant in the
presence of 2 mM ATP was twice the expected
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Cell Biology, University of Texas Southwestern Med-
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Table 1. (Apparent) equilibrium dissociation constants (Kd) for microtubules. Kd values are reported as
means � SEM of at least three independent experiments. Conditions: 2 mM nucleotide or its analog, 50
mM imidazole, 5 mM Mg-acetate, 1 mM EGTA, and 50 mM K-acetate, pH 7.4 at 27°C (nd, not
determined).

Nucleotide
Kd (nM)

Wild type L12† L11‡ L8§

AMP-PNP 4.2 � 1.3 6.0 � 1.4 20.2 � 4.0 25.0 � 6.0
ADP 6.8 � 2.5 23.5 � 8.4 12.3 � 4.0 26.5 � 5.0
ATP* 10.8 � 1.8 40.5 � 11.8 nd nd
ADP-AlFx 5.9 � 1.5 7.1 � 1.7 nd nd
ADP-Vi 21.4 � 4.3 167 � 66 nd nd

*ATP regeneration system was used to maintain ATP/ADP level. †L12: CK1 (4 ). ‡L11: K261A/R264A/
K266A. §L8: K161A/R167A/R169A/K183A.
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Supporting Online Material for Host-to-parasite gene transfer in flowering

plants (C. C. Davis and K. J. Wurdack)

Materials and Methods

Taxon sampling. The familial- and ordinal-level circumscriptions for this study

follow the APG II (S1) system. All families of Malpighiales (including alternative

APG II circumscriptions), mostly representing multiple accessions per family,

were sampled for matR, nad1B-C, and for the combined nuclear data set (PHYC

plus ribosomal 18S; see below). We similarly sampled all three genera of

Rafflesiaceae sensu stricto (cf. S2), several species from the closely related clades

Celastrales and Oxalidales, members of most basal eudicot families, some

monocots, and several “basal angiosperm” groups (S3). Amborella, Cabomba,

Illicium, and Nymphaea represent the earliest diverging angiosperm lineages (S4,

S5) and were used as outgroups. The nad1B-C data set did not include these

“basal angiosperms,” in which case, representatives of the earliest diverging

eudicots (S3), Ranunculales, were used as outgroups.

Gene isolation and sequencing. One hundred one, 146, 24, and 69 sequences for

matR, nad1B-C, PHYC, and 18S were newly obtained for this study (GenBank

numbers AY674447–AY674785), respectively. Otherwise, sequences were

obtained from GenBank. Total cellular DNA was prepared following Davis et al.

(S6) or Davis and Chase (S7). Amplification and sequencing protocols for nad1B-

C followed Freudenstein and Chase (S8), using primers B and C with new

internal sequencing primers nad1-774F
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(5’–CCGCCCGCCTTCATTTCGTGGA–3’) and nad1-856R

(5’–ATTCATCTATACTCGCTGCCAC–3’); 18S followed Soltis and Soltis (S9).

matR followed those protocols above with amplification (26F:

5'–GACCGCTNACAGTAGTTCT–3'; 1858R

5'–TGCTTGTGGGCYRGGGTGAA–3') and internal primers (matR 879F:

5'–ACTAGTTATCAGGTCAGAGA–3'; matR 1002R

5'–CACCCACGATTCCCAGTAGT–3') provided by Zhiduan Chen (personal

communication, The Chinese Academy of Sciences). PHYC sequences were

obtained using previously detailed (S4, S10) PCR, cloning, and sequencing

procedures.

Rafflesiaceae were strongly supported as monophyletic across all data

sets. We sequenced 10 PHYC clones from Sapria, and found no evidence of a

duplication event, which is consistent with previous findings using PHYC (S4,

S7). The four minor sequence variants of these clones (GenBank numbers

AY674464-AY674467) differed at a total of eight nucleotide sites. All variants

formed a strongly supported monophyletic group and were reduced to a single

placeholder in the analyses presented here.

Nucleotide and, where appropriate, amino acid sequences were aligned

by eye; the ends of sequences, as well as ambiguous internal regions, were

trimmed from each data set to maintain complementary data between taxa. We

also examined the impact of excluding the V4 and V2 domains from 18S for all

members of Rafflesiaceae (S11; see also main text). Nickrent and Starr (S11)

found the V4 domain to be particularly divergent—it contains 26% of the

sequence variation in Rafflesia despite its short length (227 of 1813 base pairs (bp);

232 of 1652 included characters in this study). Our analyses confirm the
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exceptional divergence of V4 for Rafflesiaceae. Also, the much smaller V2

domain (90 bp in our study) displayed similarly high amounts of divergence. For

example, uncorrected "p" values for Rafflesiaceae when compared with Malpighia

and Ochna (respectively) were: entire 18S (11.1–13.2%, 11.6–13.4%), 18S excluding

both V4 and V2 from Rafflesiaceae (8.2–8.9%, 8.5–9.2%), V4 only (23.3–31.8%,

23.2–31.2%), and V2 only (29.7–38.6%, 35.7–41.5%). We examined the placement

of Rafflesiaceae with 18S by excluding V2 and V4 across all taxa and by treating

these regions as missing data only for Rafflesiaceae. Both approaches resulted in

congruent topologies, with the latter (i.e., the ones presented here) being much

better resolved.

The matR, combined nuclear (PHYC and 18S), combined matR plus

nuclear, and nad1B-C data sets included 2042, 2756, 4798, and 3884 bp, across 238,

156, 136, and 147 taxa, respectively. All taxa and voucher information, including

GenBank accession numbers, and sequence alignments, for these analyses have

been archived on GenBank or is available on TreeBASE (www.treebase.org).

Phylogenetic analysis. Individual and combined parsimony analyses

were performed in PAUP* ver. 4.0b10 (S12). We restricted our analyses to

parsimony partly due to the computational intensity of likelihood and Bayesian

methods on such large datasets, but more importantly, because there is not yet a

consensus on how to handle likelihood/Bayesian analyses when missing data

are included. This is a potential problem given that PHYC is absent from some

members of the order (S7). Combined analyses were performed when there were

no strongly supported (≥ 85% bootstrap) incongruent clades between topologies

generated from independent data sets (S13, S14). We did not analyze nad1B-C in
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combination because topologies from this locus conflicted strongly regarding the

placement of Rafflesiaceae (see also below). With the exception of Rafflesiaceae,

however, all individual data sets showed congruent relationships within

Malpighiales, including nad1B-C.

PHYC and 18S data were analyzed simultaneously as a single nuclear data

set. The reason for combining these data sets, as noted in the main text, is

because PHYC is believed to be absent from at least some families of

Malpighiales including Salicaceae and some of their closest relatives (S7). 18S

includes representatives of all families not sampled for PHYC, and by combining

these data we ensured that all families of Malpighiales were sampled for the

nuclear genome. Each data set independently produced topologically congruent

results. With respect to Rafflesiaceae, 18S placed them weakly with Linaceae, and

PHYC weakly with Ochnaceae. Taxa in the nuclear analysis were only included if

both genes were sampled, except for family representatives not available for

PHYC, in which case 18S was included. We similarly analyzed the combined mt

matR and nuclear data.

An initial heuristic search of 100 random taxon addition replicates (RAS)

was conducted on each data set with tree-bisection-reconnection (TBR) branch

swapping and MulTrees on, retaining only ten trees per replicate. The resulting

consensus tree was then used as a backbone constraint to search for trees not

consistent with the initial trees. These searches were conducted as above with

1,000 RAS. This strategy was employed due to the excessive number of trees

generated for unconstrained heuristic searches, and should detect that there are

no shorter trees (S15, see also S16). In all instances, this search strategy failed to
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find any trees that were more parsimonious. The strict consensus trees of these

most parsimonious trees are presented below (Figs S1–S4).

Parsimony bootstrap percentages (S17) for each clade were estimated as

above with 1,000 RAS, TBR branch swapping, and saving no more than 10 trees

per iteration.

To assess alternate topologies generated from single and combined data

set analyses we employed the Templeton (TEMP; S18, S19), Kishino-Hasegawa

(KH; S20), and Shimodaira-Hasegawa (SH; S21) tests. Parsimony searches were

performed on the constraint tree of interest using the strategy presented above.

For the SH test branch lengths were optimized onto competing trees under the

preferred model of sequence evolution as determined by a series of hierarchical

likelihood ratio tests (S22, S23) using Modeltest ver. 3.06 (S24). The selected

optimal models were all submodels of the general time reversible (GTR) model

(S25); (matR [TIM+G], nu [GTR+I+G], matR plus nuclear [GTR+I+G], and nad1B-C

[SYM+G]). For more detailed model parameters see archived data sets.

Each test strongly favored the placement of Rafflesiaceae in the

unconstrained trees over alternative topologies. The unconstrained matR trees

were favored (TEMP, KH: P = 0.0002; SH: P= 0.01) over the trees grouping

Rafflesiaceae with Vitaceae; the unconstrained nuclear trees were favored

(TEMP: P=0.0006; KH: P = 0. 0007) over the trees grouping Rafflesiaceae with

Vitaceae; the unconstrained combined matR and nuclear trees were favored

(TEMP, KH: P < 0.0001; SH: P < 0.01) over the trees grouping Rafflesiaceae with

Vitaceae; and last, the unconstrained nad1B-C trees were favored (TEMP, KH: P <

0.0001; SH: P < 0.05) over the constrained trees grouping Rafflesiaceae with
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Malpighiales. We were unable to obtain an SH value for the combined nuclear

data due to missing PHYC sequence data. Less optimal trees were otherwise

strongly rejected in all comparisons, including those using the nuclear data set.
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Fig. S1. Strict consensus of 30 equally parsimonious trees based on mt matR

sequence data. Bootstrap values are given for those clades supported at >50%. L

= 4706; CI = 0.4533; RI = 0.7028. Malpighiales (sensu S1) in blue; Rafflesiaceae in

red; Vitaceae in yellow.

Fig. S2. Strict consensus of 10 equally parsimonious trees based on combined

nuclear PHYC and ribosomal 18S sequence data. Bootstrap values are given for

those clades supported at >50%. L = 12871; CI = 0.1962; RI = 0.4727. Malpighiales

(sensu S1) in blue; Rafflesiaceae in red; Vitaceae in yellow.

Fig. S3. Strict consensus of 60 equally parsimonious trees based on combined

matR and nuclear sequence data. Bootstrap values are given for those clades

supported at >50%. L = 12047; CI = 0.3202; RI = 0.5124. Malpighiales (sensu S1) in

blue; Rafflesiaceae in red; Vitaceae in yellow. Tree summarized as Fig 1A in main

text.

Fig. S4. Strict consensus of 10 equally parsimonious trees based on mt nad1B-C

sequence data. Bootstrap values are given for those clades supported at >50%. L

= 3724; CI = 0. 6856; RI = 0. 7112. Malpighiales (sensu S1) in blue; Rafflesiaceae in

red; Vitaceae in yellow. Tree summarized as Fig 1B in main text.

Fig. S5. Phylograms for combined matR and nuclear sequence data (A) and

mitochondrial nad1B-C (B). Each tree represents one of the most parsimonious

trees from the pool of most parsimonious trees summarized in S3 and S4,
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respectively. Malpighiales (sensu S1) in blue; Rafflesiaceae in red; Vitaceae in

yellow.
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