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Highlight 

Comparative plastome analysis of holoparasitic Cistanche and its relatives 

revealed the clade-specific pattern of plastome degradation in a single genus, 

and different genomic locations of the lost plastid genes. 
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Abstract 

The plastid genomes (plastomes) of non-photosynthetic plants generally 

undergoes gene loss and pseudogenization. Despite massive plastomes 

reported in different parasitism types of the broomrape family 

(Orobanchaceae), more plastomes representing different degradation 

patterns in a single genus are expected to be explored. Here, we sequenced 

and assembled the complete plastomes of three holoparasitic Cistanche 

species (C. salsa, C. tubulosa and C. sinensis) and compared them with the 

available plastomes of Orobanchaceae. We identified that the diverse 

degradation trajectories under purifying selection existed among three 

Cistanche clades, showing obvious size differences on entire plastome, long 

single copy region and non-coding region, and different patterns of the 

retention/loss of functional genes. With few exception of putatively 

functional genes, massive plastid fragments which have been lost and 

transferred into the mitochondrial or nuclear genomes are nonfunctional. In 

contrast with the equivalents of the Orobanche species, some plastid-

derived genes with diverse genomic locations are found in Cistanche. The 

early and initially diverged clades in different genera such as Cistanche and 

Aphyllon possess obvious patterns of plastome degradation, suggesting 

that such key lineages should be considered prior to comparative analysis 

of plastome evolution, especially in the same genus.  

 

Keywords: Cistanche, plastome, degradation, pseudogenization, gene loss, 

intracellular gene transfer 

 

Abbreviations:  

IGT, intracellular gene transfer; mipt, mitochondrial plastid insertion; nupt, nuclear 

plastid insertion; ORFs, open reading frames; MRCA, the most recent common 

ancestor; IR, inverted repeat; LSC, long single copy; SSC, short single copy. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article-abstract/doi/10.1093/jxb/erz456/5602659 by H

arvard Library user on 01 N
ovem

ber 2019



Acc
ep

te
d 

M
an

us
cr

ipt

 

4 
 

Introduction 

Despite the overall stability in architecture, gene content, and gene order of the 

plastid genomes across most angiosperms, parasitic plants are exceptions with 

plastid genomes that tend to degrade in comparison with non-parasitic plants 

(dePamphilis and Palmer, 1990; Jansen and Ruhlman, 2012). There are dramatic 

differences in genome size and gene content between parasitic and photo-

synthetic plants (Wicke et al., 2013; Cusimano and Wicke, 2016). In parasitic 

plants, holoparasites generally possess extremely special plastomes with a 

functional and physical reduction, due to the pseudogenization and massive loss 

of photosynthesis-associated genes (Wolfe et al., 1992a, 1992b; Delavault et al., 

1996; Funk et al., 2007; McNeal et al., 2007, 2009). Some holoparasites may have 

even lost their entire plastid genomes, e.g. Rafflesia lagascae (Molina et al., 2014). 

The broomrape family Orobanchaceae is the only family with species that span 

the full trophic spectrum of parasitism ranging from holoparasites to hemi-parasites 

and free-living nonparasites (Westwood et al., 2010), providing us a good system 

to study the patterns of plastome degradation and to compare various plastomes 

size among different species (Li et al., 2013; Wicke et al., 2013; Cho et al., 2015; 

Cusimano and Wicke, 2016; Fan et al., 2016; Roquet et al., 2016; Samigullin et al., 

2016; Schneider et al., 2018). Wicke et al. (2013) studied the complete plastomes 

of ten photosynthetic and nonphotosynthetic parasites plus their nonparasitic sister 

group from Orobanchaceae and found that the plastomes of this family varied 3.5-

fold in size. Among them, the plastome of Conopholis americana (45 kb) and 

Phelipanche ramosa (62 kb) had lost one inverted repeat (IR) region, while P. 

purpurea have a shortened IR region, extending only over the ycf2 gene. 

Cusimano and Wicke (2016) analyzed the plastomes of several parasites, focusing 

predominantly on the genus Orobanche, and found that the physical plastome 

reductions are proceeded by small deletions that accumulate over time. The IR 

region of Orobanche gracilis is the shortest among the Orobanche species 

reported, in spite of their other regions being similar (Wicke et al., 2013; Cusimano 

and Wicke, 2016). The sequences of increasing plastomes in Orobanchaceae 

have been available, however, comparative studies on gene loss or 
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pseudogenization from plastomes of the same genus remain insufficient. It is 

unclear whether there are obvious differences in the evolution of plastomes among 

different clades of the other genera in Orobanchaceae, and whether their plastome 

degradation occurs in similar or different regions.  

  During the evolution of plastomes, massive genes or gene fragments have been 

lost or transferred into other genomes one or more times (Bock and Timmis, 2008; 

Lloyd et al., 2012; Rice et al., 2013; Bellot and Renner, 2015; Naumann et al., 2015; 

Cusimano and Wicke, 2016; Su et al., 2019). In Orobanchaceae, Cusimano and 

Wicke (2016) reported that some plastid genes transferred into its mitochondria 

and nuclei in the species of Orobanche. Here, we sequenced the plastomes of 

three holoparasitic Cistanche species: Cistanche sinensis, Cistanche tubulosa, 

and Cistanche salsa, and compared their plastome size and patterns of gene loss 

with those of other available species of holoparasitic Orobanchaceae (e.g. 

Cistanche deserticola and Cistanche phelypaea), and revealed the differences 

among the five Cistanche species in plastome size, structure and gene content, as 

well as the fate of lost plastid genes in the evolution of Cistanche. Our study aims 

to find out the similarity and difference of plastome degradation patterns in different 

lineages of the same genus of Orobanchaceae, and compare the evolutionary 

fates of different kinds of these lost genes. 

 

Materials and Methods 

Taxon sampling and DNA sequencing 

The samples of three Cistanche species (C. salsa, C. tubulosa and C. sinensis) 

representing two sections within Cistanche were collected from Xinjiang and 

Ningxia of China. The voucher specimens were deposited in the Herbarium of 

Fudan University (FUS), Shanghai, China. Total genomic DNAs (gDNAs) were 

extracted from silica-gel dried tissue using the improved CTAB method (Doyle and 

Doyle, 1987) or the Plant Genomic DNA Kit (Tiangen Biotech Co., Beijing, China) 

following the manufacturer’s instructions. For each Cistanche species, an Illumina 

library with the insert size of 350 ± 50 bp was prepared from 5 µg of gDNA following 
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the protocol of Bentley et al. (2008). All libraries were sequenced on a HiSeq2000 

platform for 150 bp paired-end (PE) sequencing. 

 

Plastome assembly, annotation and repeat analysis of Cistanche species 

Illumina reads from the three Cistanche species were assembled using two 

different approaches: a mapping approach and a reference-assisted de novo 

assembly approach (Hahn et al., 2013; Westbury et al., 2017). The mapping 

approach allows us to obtain a relatively correct gene order for the three Cistanche 

plastomes according to their closest relatives, and the reference-assisted 

assembly approach enables us to obtain accurate nucleotide sequences of the 

three Cistanche plastomes.  

  In the mapping approach, the plastome of C. phelypaea (GenBank accession 

no. HG515538) was used as reference for obtaining the plasotmes of C. tubulosa 

and C. sinensis. For C. salsa, we used the plastome of C. deserticola (KC128846) 

as reference. Total clean reads of three Cistanche species were mapped to 

references using Bowtie2 v2.3.4.1 (Langmead and Salzberg, 2012). After 

replacing all the single nucleotide polymorphisms (SNPs) and Insertions and 

Deletions (InDels) with our data at the corresponding sites, we obtained the 

plastome sequences of the three Cistanche species.  

  In the reference-assisted de novo assembly approach, SOAPdenovo2 v2.04 

(Luo et al., 2012) was used to assemble the plastomes of the three Cistanche 

species. First, the plastome sequences of six Orobanchaceae species (C. 

phelypaea, HG515538; C. deserticola, KC128846; Aphyllon californicum, 

HG515539; Orobanche gracilis, HG803179; Schwalbea americana, HG738866; 

Phelipanche ramosa, HG803180) were used as reference bait sequences for 

extracting plastid reads. Next, all candidate plastid reads were extracted and 

collected by Magic-BLAST v2.1 (https://ncbi.github.io/magicblast/, Splice = T; other 

parameters were set as default) and Seqtk v1.0.1 software 

(https://github.com/lh3/seqtk.git). After that, all the extracted plastid reads were 

respectively used to de novo assemble the plastomes of the three Cistanche 

species using SOAPdenovo2. The preliminary assemble results with maximum 
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scaffold N50 values were selected for further analysis. All contigs and scaffolds 

were sorted according to their collinearity with C. deserticola and C. phelypaea by 

Mummer v3.23 (Kurtz et al., 2004) and the missing parts were regarded as gaps 

until the plastome sequences of the three Cistanche species were obtained. Gaps 

between contigs or scaffolds were closed with the total genomic data of each 

Cistanche species by GapCloser (a module of SOAPdenovo2, Luo et al., 2012). 

The results from the two above approaches were combined. For the IR-single copy 

region connections and retained gaps in the intergenic spacers, primers were 

designed for polymerase chain reaction (PCR) amplification and sequence 

verification.  

  The reaction mixture included 6 µl of 10 × PCR buffer, 6.4 µl of 2.5 mM 

deoxynucleoside triphosphates, 5 µl of 2.5mM Mg2+, 2.5 U of TaqE, 3 µl of 10 µM 

forward and reverse primers, and about 1 µg of template genomic DNA, with 

deionized water added to 50 µl. Each PCR program had a 4 min hot start at 94 °C, 

followed by denaturing at 94 °C for 30~60 s, annealing at Tm for 1~2 min; and 

extension at 72 °C for 2~3 min, for 35 cycles; one cycle of denaturing at 72 °C for 

10 min. The TAIL-PCR method (Liu and Whittier, 1995; Liu and Huang, 1998) was 

also used for amplification of the downstream flanking region of ycf1 gene to obtain 

the complete short single copy (SSC) region of C. sinensis. Primers and programs 

for completing and verifying the plastomes of the three Cistanche species can be 

found in Supplementary Table S1-S4. 

  The plastomes of the three Cistanche species were preliminarily annotated 

using DOGMA (http://dogma.ccbb.utexas.edu/, Wyman et al., 2004). The 

annotation results were further adjusted manually. To identify the initiation and 

termination sites of the protein-coding genes, open reading frames (ORFs) were 

identified by ORFfinder on the NCBI website 

(https://www.ncbi.nlm.nih.gov/orffinder/) and the corresponding sequences of 

closely related species of Cistanche were also applied as reference. Compared 

with the reference species, pseudogenes were determined by their short size and 

lack of start codons (Wicke et al., 2013; Bellot and Renner, 2015). Protein-coding 

genes that were truncated at 5’ end, lacking an unambiguously identifiable 
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translation start, and could not translated into amino acid sequences were 

annotated as pseudogenes. Considering the conservation of plastid genes and the 

inherent properties of the splice sites (Black, 2003; Matlin et al., 2005), the splicing 

sites at the exon boundary of the plastid genes in the three Cistanche species were 

predicted according to their closest relatives. The plastomes of the three Cistanche 

species were further annotated with Sequin v15.10 

(www.ncbi.nlm.nih.gov/Sequin/index.html). The validated complete plastome 

sequences were deposited in GenBank (C. salsa, MK386640; C. sinensis, 

MK386641; C. tubulosa, MK386642). Graphical genome maps of the three 

Cistanche species were drawn by OGDraw (https://chlorobox.mpimp-

golm.mpg.de/OGDraw.html, Lohse et al., 2013). The forward and palindromic 

repeats longer than 20 bp and a Hamming distance of 3 in the plastid genomes of 

the three Cistanche species were identified and located using the online REPuter 

software (http://bibiserv.techfak.uni-bielefeld.de/reputer, Kurtz et al., 2001). 

Repeats with e-value > 0.1 were not considered. The same REPuter analyzing 

process was run to assess the repeat number of Cistanche and the members of 

other closely related genera. 

 

Estimation of the relative divergence time of different lineages from Cistanche and 

its closely related genera  

To estimate the divergence time of the three Cistanche clades relative to the 

species of other closely related genera, thirty-two retained housekeeping plastid 

genes were used to construct the phylogenetic tree of Orobanchaceae. The DNA 

sequence matrixes of these genes were combined and aligned by nucleotide with 

MEGA5 (Tamura et al., 2011) and adjusted manually. All missing data were 

replaced with gaps. The phylogenetic tree was constructed using maximum 

likelihood (ML) method with RAxML v7.0.4 (Stamatakis, 2006), applying the 

GTRGAMMA model and 1,000 replications to evaluate the support of each branch. 

Divergence timing was analyzed by Bayesian Evolutionary Analysis by Sampling 

Trees (BEAST 1.8.2; Drummond et al., 2012). Owing to lacking of a reliable fossil 

record within Orobanchaceae, we followed the methods of Fu et al. (2017) to set 
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two external fossil calibration points (the stem age of Solanaceae and the crown 

age of Pedicularis and Olea, Zanne et al., 2014) and execute further analyses to 

generate the final maximum clade credibility tree. FigTree 1.3.1 (Rambaut, 2006) 

was used to visualize the topology and node height with 95% highest posterior 

density (HPD). 

 

Comparisons of nucleotide substitution rates of plastid protein-coding genes of 

Cistanche species  

  Six functional protein-coding plastid genes (matK, rps2, rpl16, rps4, rps7, and 

rps14) available in all sampling species of Orobanchaceae were used to check 

whether the relative nucleotide substitution rates have elevated in Cistanche 

against other lineages in Orobanchaceae. Substitution rate analyses were carried 

out by the Codeml program of PAML v1.3.1 (Yang, 2007; Xu and Yang, 2013). The 

sequences of a non-parasitic plant (Lindenbergia philippensis), nine hemiparasites 

representing seven genera (Buchnera, Castilleja, Neobartsia, Pedicularis, 

Schwalbea, Striga and Triphysaria), and 23 holoparasites representing eight 

genera (Aphyllon, Boulardia, Cistanche, Conopholis, Epifagus, Lathraea, 

Orobanche and Phelipanche) in Orobanchaceae were downloaded from GenBank 

and included in this analysis. Considering potential rate differences in specific 

lineages, the branch model was used to estimate rates of synonymous and non-

synonymous substitutions (dS and dN) and the ω ratio (dN/dS). Using a likelihood 

ratio test (LRT) (Yang and Nielsen, 1998; Yang, 1998), we further tested whether 

the Cistanche lineage possesses different ω ratios from other lineages. For 

pairwise dN/dS evaluations in Cistanche species, we referred the method of 

Schelkunov et al. (2015) to perform the PAML analysis in a pairwise mode 

(runmode= -2). The initial dN/dS and tS/tV ratios were set to 0.5 and 2.0, 

respectively, with a codon frequency model F3×4.  

 

Identification of genomic location of the lost plastid genes or fragments  

To identify the genomic location of plastid genes or fragments lost from plastomes, 

29 mitochondrial genomes of 19 families representing 14 orders and 100 
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plastomes of 21 families representing four orders were taken as reference bait 

sequences (Supplementary Tables S5, S6). All of the mitochondrial and plastid 

reads of the three Cistanche species were extracted according to these references 

by Magic-BLAST v2.1 and Seqtk v1.0.1. All the extracted reads were then 

combined as a read pool to carry out de novo assemble using SOAPdenovo2.  

  All the contigs and scaffolds were annotated against all the available data in 

GenBank using BLASTN v2.2.23 with an e-value ≤ 10-5. The lost plastid genes or 

fragments from the assembled contigs or scaffolds of the three Cistanche species 

were searched. Contigs or scaffolds that were annotated as plastid genes or 

fragments with mitochondrial or nuclear flanking sequences were used to identify 

mitochondrial plastid insertions (mipts) or nuclear plastid insertions (nupts). 

Sequences of mipts and nupts for further phylogenetic analyses were deposited to 

NCBI under GenBank accession numbers (MK413701, MK413702, and 

MK413703). The lost plastid genes were also investigated through mapping the 

total genomic clean reads of the three Cistanche species to the corresponding 

genes of their closest relatives using Bowtie2 v2.3.4.1 (Langmead and Salzberg, 

2012). The average coverage of multiple plastid, mitochondrial and nuclear genes 

in C. tubulosa were calculated to infer the locations of the lost plastid genes in the 

three Cistanche species.  

 

Results 

Structure and physical features of Cistanche plastomes 

The sequence quality of the three Cistanche species and total clean reads are 

shown in Supplementary Table S7. The average coverage of the plastomes of C. 

salsa, C. tubulosa and C. sinensis are 2,731.25×, 1,507.09× and 3,025.83×, 

respectively. Detailed characteristics of the five Cistanche plastomes are listed in 

Table 1, the physical maps of the five Cistanche plastomes are shown in Fig. 1, 

and the circular maps of the three newly sequenced plastid genomes can be found 

in Supplementary Fig. S1. Phylogenetic relationships among these Cistanche 

species and closely related taxa are shown in Supplementary Fig. S2. Similar to 

the vast majority of angiosperms, the plastomes of the three Cistanche species are 
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consisted of a long single copy (LSC) region, a SSC region and two IRs that 

separate the two single copy regions (Fig. 2). With a total length of 87,707 bp, C. 

sinensis possesses the smallest plastome of the five Cistanche species (Table 1). 

The plastid genomes of C. salsa and C. tubulosa are 101,776 bp and 94,123 bp, 

respectively. The GC content of C. sinensis is 37.95%, which is the highest among 

the five Cistanche species (Table 1). 

  In terms of the gene content in the plastomes of the five Cistanche species, there 

are 68 different types of genes in the plastome of C. sinensis, which is less than 

that of C. salsa (89 genes) and C. tubulosa (72 genes). There are 22 tRNA genes, 

four ribosomal RNA genes, 13 photosynthesis and energy production genes, 21 

ribosomal protein and initiation factor genes, three RNA polymerase and intron 

maturase genes, and five other essential genes in C. sinensis. Twenty genes are 

duplicated by IRs in the plastome of C. sinensis (18 in the IRs of C. salsa, 22 in 

the IRs of C. tubulosa). Essential genes in the plastomes of the five Cistanche 

species including putatively functional gene with intact ORFs and structural RNAs 

(transfer and ribosomal RNAs) are shown in Table 2.  

Three main clades of Cistanche has distinct gene status. The plastid coding 

gene petG is the most typical example that it is putatively functional in C. sinensis 

but lost in the C. tubulosa-C. phelypaea clade and pseudogenized in the C. 

deserticola-C. salsa clade. Besides petG, 16 genes including five degeneration 

types represented by rpl32, psbA, ycf1, ndhE, and rps3 can distinguish C. sinensis 

from other two clades. Four plastid genes (atpA/B/E/F) were consistently lost in 

the C. tubulosa-C. phelypaea clade but pseudogenized in other two clades, 

indicating that losses of these genes probably predated the differentiation of C. 

tubulosa and C. phelypaea, but postdated the differentiation of C. sinensis and C. 

tubulosa. Some plastid genes (psaI, psbB/D/L, ycf3 and trnV-UAC) show the 

different situation that they exist in the C. deserticola-C. salsa clade 

(pseudogenization or putatively functional gene) but lost in the other Cistanche 

species, suggesting that these genes exist at least before MRCA of the five 

Cistanche species. Some photosynthesis- and energy production-related genes 

such as atpH/I, cemA, ndhA/C/D/F/G/I/J/K, petA/B/D/N, psaC, psbH/N/T, and 
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rpoC1 are consistently lost from the plastomes of all five Cistanche species. 

Furthermore, the species within same clade (C. deserticola vs. C. salsa and C. 

tubulosa vs. C. phelypaea) tend to have consistent patterns of pseudogenization 

and gene loss. The clade-specific patterns of gene degeneration in the five 

Cistanche plastomes are shown in Table 2.  

  In the plastomes of the five Cistanche species, the repeat number of C. sinensis 

is the lowest, including 18 forward and 69 palindromic repeats, with at least 1,008 

bp per repeat-unit with a sequence identity of more than 90%. As for the repeat 

density, C. sinensis is also the smallest (1/1008) among the five Cistanche species; 

C. deserticola is the biggest (1/446); and the rest three species range from low to 

high as follows: C. tubulosa (1/645), C. salsa (1/476), and C. phelypaea (1/465). 

Compared with the species of other closely related genera, the repeat density of 

Cistanche sinensis is smaller than that of Orobanche species, but it is larger than 

that of most Aphyllon species (excluding A. californucum). Phelipanche species 

possess the largest repeat density among these four genera.  

 

Nucleotide substitution rate analyses of the retained plastid genes in Cistanche 

  As expected, analysis of relative nucleotide substitution rates based on a 

concatenated set of six plastid protein-coding genes (matK, rps2, rpl16, rps4, rps7, 

and rps14) which shared in all sampling Orobanchaceae showed that there was 

no significant difference between the species of Cistanche and the members of 

Aphyllon, Orobanche and Phelipanche. Selectional strength was shifted towards a 

more neutral evolution in these genes of Orobanchaceae (ω between 0.0001 and 

2.133), with all obligate parasites (including the hemi-parasitic Schwalbea 

americana) adopting a higher ω than the nonparasitic species, Lindenbergia 

philippensis as previous study of Cusimano and Wicke (2016). Detailed results are 

shown in Fig. 3 and Supplementary Table S8. Pairwise comparisons of these 

protein-coding genes of Cistanche and a photosynthetic Lindenbergia philippensis 

confirmed that the dN/dS value is lower than 1 (Fig. 4), strongly supporting the idea 

that these plastid genes are under purifying selection in the species of Cistanche.  
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Genomic location analysis of the lost plastid genes or fragments  

In this study, we found that numerous lost plastid genes or fragments had been 

transferred into mitochondrion genome and nucleus through intracellular gene 

transfer (IGT) (Table 3). In C. tubulosa, the flanking regions of the plastid genes 

petA/G and rpoC1 are mitochondrial sequences, supported by average coverage 

range of which ranged from 440.32× to 482.62×. C. tubulosa nested within 

Lamiales showing its vertical placement on the phylogenetic tree of these genes 

(Fig. 5). In addition, the plastid gene of accD in C. salsa was suggested to have 

been transferred into nucleus because of its flanking sequences of nuclear origin 

(C. salsa-C1185, MK413701). Distinct from horizontal gene transfer (HGT), it had 

a vertical placement on the phylogenetic tree close to C. deserticola (Fig. 5, Table 

3).  

  The average coverage of multiple plastid, mitochondrion, and nuclear genes in 

C. tubulosa were investigated using the total clean genome data and were found 

to range from 1026.11× (rps4) to 1540.20× (rbcL) for plastid genes, 113.37× (sdh4) 

to 385.53× (matR) for mitochondrial genes, and usually less than 20× for nuclear 

genes (e.g. 0.95×, 7S globulin gene; 8.55×, alpha-tubulin gene). Based on the 

relatively clear ranges of different types of genes, genomic location of lost plastid 

genes of the three Cistanche species can be inferred (Table 3). The average 

coverage of the plastid gene atpH in C. salsa and C. sinensis is 1.63× and 14.27×, 

and it is inferred as being located in their nuclei; inferred from average coverage, 

the atpI gene were probably transferred into nucleus in C. salsa (13.28×), and 

mitochondrion in C. tubulosa (146.99×) and C. sinensis (428.14×); the average 

coverage of the petA gene in C. salsa and C. tubulosa is 85.47× and 475.85×, 

which is close to the mitochondrion range, suggesting that they are located in 

mitochondrial genome. This is consistent with the assembly result (C. tubulosa-

scaffold190, MK413703), the flanking region of which is mitochondrial sequence. 

Similarly, the average coverage of rpoC1 gene in C. tubulosa and C. sinensis is 

107.23× and 44.60×, and is inferred to be located in the mitochondrial genome, 

one of which is also supported by the assembly result (C. tubulosa-scaffold133, 

MK413702). 
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Comparison of the relative divergence time of different lineages in Orobanchaceae 

Molecular timing based on the plastid genomes can elucidate the relative 

occurrence order of different lineages in Orobanchaceae (Fig. 2). The Cistanche 

species are deeply diverged: the C. sinensis clade was the earliest-diverging 

lineage, followed by the C. tubulosa-C. phelypaea clade and the C. salsa-C. 

deserticola clade. Similarly, Aphyllon californicum was the basalmost clade of 

Aphyllon, followed by the Aphyllon purpureum-Aphyllon fasciculatum clade and the 

Aphyllon epigalium-Aphyllon franciscanum clade. The divergence time of A. 

californicum and other six Aphyllon species postdates that of C. sinensis and other 

four Cistanche species, but predates that of C. salsa and C. tubulosa. Similarly, 

the timing of the most recent common ancestor (MRCA) of A. fasciculatum-A. 

franciscanum are comparable to that of C. salsa-C. tubulosa and that of the 

Orobanche species, followed by the divergence of three Phelipanche species. 

 

 

Discussion 

The distinct plastome characteristics of three Cistanche clades  

The plastome architecture is highly conserved in most flowering plants (Palmer, 

1985). Generally, the plastome size and architecture are similar within the same 

genus, e.g. the photosynthetic and non-parasitic Rehmannia and holoparasitic 

Phelipanche (Wicke et al., 2016; Zeng et al., 2017). However, there are some 

exceptions in Orobanchaceae, e.g. the plastome sizes of Orobanche gracilis and 

Aphyllon californicum possessing extremely small and big plastome in their own 

genus, respectively (Cusimano and Wicke, 2016; Schneider et al., 2018). Among 

the five Cistanche species, there are clear clade-specific differences in plastome 

size. The C. salsa-C. deserticola clade and C. sinensis possessed the largest 

plastome and the smallest plastome, respectively, while the C. phelypaea-C. 

tubulosa clade possesses medium-sized plastome. Inferred from phylogenetic 

timing, C. sinensis was the earliest diverging clade, followed by the C. tubulosa-C. 
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phelypaea clade and the C. salsa-C. deserticola clade. Our results suggest the 

difference in divergence time of the species of Cistanche may be contributed to 

diverse degrees of plastome degradation, affecting plastome size of different 

clades. 

  The differences of plastome size in the three Cistanche clades are associated 

with their gene content. The shortened IR region of O. gracilis result in its smallest 

plastome among Orobanche species, and the largest plastome size of A. 

californicum among Aphyllon species is attributed largely to the expansion of its 

single copy regions (LSC and SSC). The diversity in plastome sizes of the 

Cistanche species can be attributed to the length changes of their LSC regions. 

The LSC region of C. sinensis is the shortest among the five Cistanche species, 

while the C. salsa-C. deserticola clade possesses the longest LSC region.  

  The total length of noncoding regions including rRNAs, tRNAs and intergenic 

regions among three Cistanche clades also shows obvious differences (Table 1). 

Among three Cistanche clades, the size of noncoding region of C. sinensis is the 

shortest, whereas the C. deserticola-C. salsa clade and the C. phelypaea-C. 

tubulosa clade possesses the longest and medium-sized noncoding region, 

respectively. 

  Additionally, the extreme short intergenic region (Table 1) and the extreme small 

repeat number of C. sinensis are inferred to be attributed largely to its smallest 

plastome size among Cistanche species. Compared with other two Cistanche 

clades, C. sinensis possesses the largest GC content, as well as the smallest 

plastome with the shortest noncoding region, making it unique among the five 

Cistanche species. 

  In contrast to the complex gene contents among the closely related genera (Fig. 

6), the plastid gene content of the three clades of Cistanche are distinctly different. 

The number of plastid genes vary from 60-80 in Orobanche, 61-68 in Phelipanche 

and 66-80 in Aphyllon. There is no obvious gene content pattern in different clades 

of these genera. In Cistanche, however, C. sinensis possesses the least number 

of plastid genes (68 genes) and C. deserticola-C. salsa clade possesses the most 

plastid genes (89 genes) (Table 1).  
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Diverse patterns of pseudogenization and gene loss in plastomes of Cistanche and 

its relatives 

As far as the functional gene loss was concerned, both ancient and recent 

origins of gene loss or pseudogenization can be traced by the phylogenetic 

relationships among the Cistanche species and their relatives (Fig. 7). The loss of 

different genes happened in almost every clade, while pseudogenization occured 

only in the specific clades.  

Analyzed from gene status, there are two forms of gene loss. Some genes such 

as psbH and ndhA are missing in the known plastid genome of the whole 

Orobanchaeae, suggesting that gene losses occurred anciently and the molecular 

timing was estimated about 24.91 Ma; similarly, the timing of gene losses of ndhJ, 

atpI/H, and rpoC1 was very ancient, dating back to 19.01 Ma. But in another case, 

genes such as petG, psaJ and rpoA are still retained in certain Cistanche species, 

while they are pseudogenes or completely lost in other Cistanche species, 

suggesting that these losses are recent. Phylogenetic analysis of single gene (e.g., 

petG) can reveal that the loss of these genes should be directly from the complete 

genes or via pseudogenes indirectly (Fig. 8).  

As other Orobanchaceae genera, obvious plastome degeneration patterns 

within Cistanche could not be found if we didn’t make a distinction between 

pseudogenization and gene loss. However, there are a clear difference among the 

three Cistanche clades when we consider pseudogenization and gene loss 

separately, especially when we analyze character evolution of putatively functional 

gene, pseudogene and lost gene of different Cistanche clades in the phylogenetic 

framework (Fig. 9, Supplementary Fig. S4). The clade-specific pattern is most 

evident between C. sinensis and the clade of the remaining Cistanche species. 

The plastome size of the early and initially diverged clade represented by C. 

sinensis has obviously different from that of the latter. 

Although not all genera exhibit clear clade specificity, we have still found similar 

clade-specific patterns in Aphyllon (Fig. 9, Supplementary Fig. S4). Aphyllon 
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represents another example that associates divergence time with extreme 

plastome size: as the earliest diverging species in Aphyllon, A. californicum, which 

divergent time separated from other species within a single genus is similar to that 

of C. sinensis (Fig. 2), possesses larger plastome size than the other reported 

Aphyllon species (Schneider et al., 2018).  

Similar phenomena should exist in other taxa. Our study exemplifies that the 

well-differentiated parasitic lineages exhibit obvious differences of plastome 

degeneration among diverse clades within the same genus, indicating that 

exploring gene loss, pseudogenization and gene retention within the phylogenetic 

framework will help us understand the evolutionary process of plastome 

degeneration.  

 

The fate of the lost plastid genes 

Examples of lost plastid genes being integrated to mitochondrial and nuclear 

genome through IGT have been reported in some parasitic genera, e.g., Pilostyles 

(Apodanthaceae), and Orobanche (Orobanchaceae) (Bellot and Renner, 2015; 

Cusimano and Wicke, 2016). Incorporation of exogenous chloroplast-derived 

sequences of host into the mitochondrial genomes of parasitic plants through HGT 

is not rare, e.g. Rafflesia and Sapria (Rafflesiaceae) (Xi et al., 2013; Molina et al., 

2014), and Aphyllon (Schneider et al., 2018), and the inverse mitochondrion-to-

mitochondrion HGT from parasitic plant to host has been found in atpI (Mower et 

al., 2004). However, no transfer of plastid-derived genes from the parasitic plant 

level to the host has been found. In Orobanchaceae, IGTs of only five Orobanche 

species (O. austrohispanica, O. crenata, O. densiflora, O. gracilis, and O. rapum-

genstae) were studied (Cusimano and Wicke, 2016) and massive mipts and nupts 

were found in this genus. Similarly, we found 16 mipts and 19 nupts in three 

Cistanche species through investigating the average coverage of lost plastid genes 

and the assembly results.  

  Diverse IGT patterns can also be found in three Cistanche species, e.g. for psbC 

and psbD which transferred into their nucleus in Orobanche species, they had 

diverse genomic locations in Cistanche species: the IGT copies of psbC were 
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located in the mitochondrial genome of C. sinensis and C. salsa, while it was found 

in the nuclear genome of C. tubulosa, the IGT copy of psbD was found located in 

the nucleus of C. salsa, mitochondrion of C. tubulosa, while no IGT copy was found 

in C. sinensis; petA and petG were located in the mitochondrial genome of C. 

tubulosa and C. salsa, while they were lost and transferred into the nucleus of C. 

sinensis, respectively; rpoC1 were located in the mitochondrion of C. sinensis and 

C. tubulosa, whereas it was lost or transferred into nucleus of C. salsa. It has been 

uncertain whether the different whereabouts of lost plastid genes in these species 

represents clade specificity. However, the intracellular transfer patterns of mipts 

and nupts show obvious differences between the species of Cistanche and 

Orobanche, e.g. the psaB copies were transferred into mitochondrion or nucleus 

of the Orobanche species, but no IGT copy of psaB was found in Cistanche species; 

the rpl23 copies had been transferred into nucleus in Orobanche species, but no 

IGT copy of rpl23 occurred in the plastomes of Cistanche species. 

To investigate the function of these transferred genes above, we referred the 

standard of Bellot and Renner (2015) to analyze their gene length and internal stop 

codons. Two mipts (petA and rpoA) and one nupt (accD) were classified as 

pseudogenes for their truncated length compared with their functional ones in 

flowering plants (Fig. 5). In C. tubulosa, one mitochondrial scaffold contains 

possibly functional plastid gene-petG, as inferred from its intact ORF which can be 

translated into complete amino acid sequence (Fig. 5) and its length is same as 

that of Lindenbergia philippensis. The plastid gene atpI of C. sinensis probably has 

function judged from the coverage reads but it needs further verification. Other 

mipts and nupts, mostly in the form of fragments, mean that they have lost their 

function in Cistanche, almost in line with previous studies on parasitic plants (Bellot 

and Renner, 2015; Cusimano and Wicke, 2016). This may also be a common 

phenomenon in angiosperms (Notsu et al., 2002; Goremykin et al., 2009; Alverson 

et al., 2010; Rice et al., 2013).  

 

At present, only few available genomic data can be used for specific comparison 

of the obvious differences of interspecific IGTs. From these data, however, it is 
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difficult to order the movements into the nucleus or mitochondrion accurately in 

most cases for the poor phylogenetic resolution. Nevertheless, the movements 

shared with a clade should be judged as ancient IGTs. For instance, atpI has been 

transferred into the nucleus or mitochondrion in three species of Cistanche. 

Interestingly, this gene has been lost at the MRCA of the clade of (Cistanche, 

(Conopholis, Epifagus)). Similar intracellular transfer of this gene may also occur 

in the latter two genera. We would like to see that more species will be added to 

the comparative analysis in the future to better understand the regularity of gene 

loss during the process of plastome reduction. 

 

In sum, we revealed that the infrageneric clades of Cistanche with different 

divergence time possess distinct plastome size and gene content, leading to 

diverse trajectories of plastome degradation. As for plastome size and gene 

content, a similar phenomenon can be found among different clades of a 

heterotrophic orchid complex (even the same species) with different divergence 

times (Barrett et al., 2018). The clade-specific pattern similar to Cistanche were 

also found in the species of Aphyllon, suggesting that this pattern should also occur 

in the other taxa. As more genomic data accumulate for different lineages involving 

parasitic, heterotrophic and other plants (e.g. Pilostyles, Bellot and Renner, 2015; 

Hydnora, Naumann et al., 2015; Epipogium, Schelkunov et al., 2015; Monotropa, 

Hypopitys and Pyrola, Logacheva et al., 2016; Cytinus, Roquet et al., 2016; 

Balanophora, Su et al., 2019), such phenomena of plastid genes that were lost 

from plastomes and had been transferred into mitochondrion or nucleus may not 

be limited to the known taxa, additional cases of mipts and nupts in the closely 

related genera will continue to be discovered. Our comparative plastome analyses 

enlighten that if different divergent clades of the same genus were sampled 

densely in other lineages, more new findings will be undertaken to improve our 

understanding on plant plastome evolution and the fate of the lost plastid genes. 
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Figure legends 

Fig. 1. Physical maps of the plastid genomes of five Cistanche species. All genes 

were colored according to functional complexes. Functional genes and structural 

RNAs were shown in solid blocks. Pseudogenes were indicated by ψ, shown in 

dashed blocks. 

 

Fig. 2. Comparison of boundary positions between single copy (large, LSC or small, 

SSC) and inverted repeat (IR) regions among the plastomes of five Cistanche 

species and other Orobanchaceae species. The location of inverted repeat region 

(IRa and IRb) was referred to Fig. 1. Numbers in red are obviously different from 

those of other species in the same genus. Maximum likelihood tree is analyzed 

based on 32 housekeeping genes available in these Orobanchaceae species. The 

expanded phylogenetic tree with bootstrap support values is shown in 

Supplementary Fig. S2. 

 

Fig. 3. Nucleotide substitution rates and selectional regimes in Cistanche and 

their relatives. The proportion of sites under purifying selection (ω < 1), neutral 

evolution (ω = 1, but not significant), positive selection are shown by different 

colors (blue, grey and red); red branch means ω > 1 (p-value < 5e-02), but no 

further discussion in this study. Different mean ω values according to LRT test 

are illustrated as branch width, withthick(er) branches indicating a higher mean 

ω. Branch length reflects the number of substitution per site. 

 

Fig. 4. dN/dS between the species of Cistanche and Lindenbergia philippensis. 

Whiskers show standard errors estimated by PAML.  

 

Fig. 5. Gene maps (A) and phylogenetic relationships (B) of three mipts (petA, 

petG and rpoC1) and one nupt (accD). The gene maps show the genome location 

of the transgenes. The orange box represents the mitochondrial sequence, 

indicating that the transgene is located in the mitochondrion genome; the green 

box represents the plastid-origin transgenes; and the red box represents the nuclei 
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sequence, indicating that the transgene is located in the nucleus. The transfer 

length of petA, petG, rpoC1, and accD is 539 bp, 156 bp, 525 bp, and 279 bp, 

respectively. 

 

Fig. 6. Gene content and annotation of plastomes of 25 Orobancheae species. 

The matrix shows the physically lost gene (black), pseudogenized gene (gray) or 

putatively functional gene with intact ORFs (white). An asterisk (*) indicates the 

gene was pseudogenized and putatively functional in different IR region, 

respectively. 

 

Fig. 7. Inferred gene losses and pseudogenization in Cistanche and its relatives. 

In the maximum likelihood tree, the unambiguous gene loss and pseudogenization 

are shown below and above branches, respectively. Different colors represent 

different types of genes. Branch lengths of the tree are proportional to the 

maximum number of the lost genes or the pseudogenes, whose names are given 

along the branches. Triangles at the tip of each terminal branch simplifies the 

internal structure of three genera (Aphyllon, Phelipanche and Orobanche).  

 

Fig. 8. Clade-specific degeneration pattern of petG gene in Cistanche and related 

species. The box above the branches indicates different gene status. Gene 

possess intact ORF is white, pseudogene is gray and lost gene is black.  

 

Fig. 9. The simplified clade-specific degeneration patterns of protein-coding genes 

in the species of Cistanche and Aphyllon. Three different degeneration patterns 

were found in Cistanche clade based on phylogenetic trees. The expended trees 

of different genes are presented in Fig. 8 and Supplementary Fig. S4. Among these 

genes, psbD and trnV-UAC show the C. deserticola-C. salsa clade specific pattern; 

ndhE, psbA, ycf1, ycf2 and trnT-UGU show the C. sinensis clade specific 

degeneration/existence pattern; atpB shows the C. phelypaea-C. tubulosa clade-

specific degeneration pattern. In Aphyllon, atpF, rpoA, rps12 and trnG-GCC show 

the A. californicum clade-specific degeneration/existence pattern; psbI shows the 
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A. epigalium-A. franciscanum clade-specific degeneration pattern; psbM shows 

diverse gene status in different branches. Black, gray and white box indicates the 

lost gene, pseudogene and putatively functional gene with intact ORFs, 

respectively. 
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Table 1. Characteristics of five Cistanche plastomes 

 

 

 

 

 

 C. sinensis C. phelypaea C. tubulosa C. salsa C. deserticola 

Total size (bp) 87,707 94,380 94,123 101,776 102,657 

LSC size (bp) 26,435 31,196 31,017 46,579 48,350 

SSC size (bp) 11,865 8,019 8,547 8,468 8,800 

IR length (bp) 49,407 55,165 54,559 46,729 45,507 

Size of coding  

regions (bp) 

50,648 48,019 48,957 52,293 53,259 

Size of protein-coding 

regions (bp) 

15,347 28,438 29,538 22,806 29,303 

Size of rRNA (bp) 9,049 9,048 9,048 9,940 9,044 

Size of tRNA (bp) 4,884 5,095 3,999 7,763 7,185 

Size in intergenic 

regions (bp) 

23,517 32,228 32,249 31,931 33,166 

No. of different genes 68 77 72 89 89 

No. of different 

pseudogenes 

22 19 20 35 28 

No. of different protein-

coding genes 

23 24 22 20 27 

No. of different tRNA 

genes 

22 29 26 30 30 

No. of different rRNA 

genes 

4 4 4 4 4 

No. of different genes 

duplicated by IR 

20 21 22 18 18 

Overall GC content (%) 37.95 36.56 36.53 37.26 36.78 

GC content in protein-

coding regions (%) 

33.67 36.05 34.49 36.51 36.70 

GC content in IGSs (%) 34.02 31.20 31.60 31.45 31.10 

GC content in rRNA (%) 54.64 54.89 54.87 54.90 54.97 

GC content in tRNA (%) 51.37 49.07 48.99 47.89 48.20 
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Table 2. Statistics of the degenerate and putatively functional plastid genes in the 
five Cistanche species 

Gene Classes Gene IDs 

Putatively functional gene with intact 
ORFs in the five Cistanche species 

matK, infA, rpl14, rpl20, rpl33, rps11, 
rps18, rps2/4/7/8 

Structural RNAs (transfer and ribosomal 
RNAs) in the five Cistanche species 

trnA-UGC, trnC-GCA, trnD-GUC, 
trnE-UUC, trnfM-CAU, trnM-CAU, 
trnG-UCC, trnI-CAU, trnI-GAU, trnK-
UUU, trnL-CAA, trnL-UAG, trnN-
GUU, trnP-UGG, trnR-ACG, trnS-
GCU, trnS-GGA, trnV-GAC, trnW-
CCA, trnY-GUA, rrn16/23/4.5/5 

Lost genes in the five Cistanche species atpH/I, cemA, ndhA/C/D/F/G/I/J/K, 
petA/B/D/N, psaC, psbH/N/T, rpoC1 

Pseudogenized genes in the five 
Cistanche species 

ndhB/H, psaA/B, rbcL, rpoB, rpoC2, 
rpl23 

Lost genes in C. sinensis which exist in 
the other Cistanche species 

rpl32, trnF-GAA, trnH-GUG, trnQ-
UUG, trnS-UGA, trnT-UGU 

Pseudogenized genes in C. sinensis but 
lost in the other Cistanche species 

ndhE, petL 

Lost genes in C. sinensis but 
pseudogenized in the other Cistanche 
species 

psbA/E/J/K, ycf4 

Putatively functional gene in C. sinensis 
but pseudogenized in the other 
Cistanche species 

ycf1 

Pseudogenized genes in C. sinensis but 
exist with putative function in the other 
Cistanche species 

rps3, ycf2 

Lost genes in the C. tubulosa-C. 
phelypaea clade but pseudogenized in 
the other Cistanche species 

atpA/B/E/F 

Pseudogenized genes in the C. 
deserticola-C. salsa clade but lost in the 
other Cistanche species 

psaI, psbB/D/ L, ycf3 

Gene exists in the C. deserticola-C. salsa 
clade but lost in the other Cistanche 
species 

trnV-UAC 

Putatively functional gene exists in C. 
sinensis but lost in the C. tubulosa-C. 
phelypaea clade and pseudogenized in 
the C. deserticola-C. salsa clade 

petG 
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Table 3. Statistics of mipts and nupts in the species of Orobanche and Cistanche 

 O_ aus O_cre O_den O_gra O_rap C_sin C_tub C_sal 

atpA - n - n - - n - 
atpB - n - n m - m - 
atpE - - - n m, n - n - 
atpF - n - n m - n - 
atpH - n n n n n - n 
atpI n n - n n m m n 
psbA m, n n n n n - - n 
psbB - - - - - n - n 
psbC n n n n n m n m 
psbD n n n n n - m n 
psbE - n - n n - - - 
psbF - - - - - n n - 
psbK - - - - n - - - 
psbZ n n - n n m - - 
petA - n - - n - m m 
petG - - - - - - m m 
petN n - - - - - - - 
psaA - n n n - - - - 
psaB m, n n m n n - - - 
psaC - - - n - - - - 
ndhA - - - n - - - - 
ndhB - n - n - - - - 
ndhC - - - n - - - - 
ndhG - - - n - - - n 
ndhH n n n - - - - - 
ndhI - n - - - - - - 
ndhJ n n n n - m - - 
ndhK - - - n - - - - 
rpoA - n - n - - n - 
rpoA - n - n n - - - 
rpoC1 - n n n n m m - 
rpoC2 - n - n - - - m 
rpl23 n n n n n - - - 
rpl32 - - - - - n - - 
ycf3 m n n n - - n - 
ycf4 - n n n n - - - 
cemA - - - n - - - - 
ccsA - - - n - - - - 
accD - - - - - - n - 
rbcL - - n n - - m - 

“m” and “n” represent mipt and nupt, respectively. The symbol “-” means that neither mipt 
nor nupt is found in genomic data. The abbreviations of species name are as follows: 
O_aus, Oroanche austrohispanica; O_cre, Orobanche crenata; O_den, Orobanche 
densiflora; O_gra, Orobanche gracilis; O_rap, Orobanche rapum-genistae; C_sin, 
Cistanche sinensis; C_ tub, Cistanche tubulosa; C_sal, Cistanche salsa. 
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SSCIRbSSC IRa LSC

8,019 bp31,196 bp 28,364 bp8,019 bp 26,801 bp

8,769 bp49,850 bp 24,009 bp8,769 bp 24,033 bp 106,661 bp

9,194 bp50,674 bp 22,383 bp9,194 bp 22,389 bp 104,640 bp

14,695 bp44,009 bp 24,051 bp14,695 bp 24,041 bp 106,796 bp

10,532 bp45,616 bp 23,894 bp10,532 bp 23,890 bp 103,932 bp

10,315 bp45,125 bp 23,889 bp10,315 bp 23,887 bp 103,216 bp

11,052 bp45,742 bp 23,691 bp11,052 bp 23,668 bp 104,153 bp

12,995 bp62,292 bp 24,225 bp12,995 bp 24,227 bp 123,739 bp

7,608 bp42,763 bp 20,362 bp7,608 bp 17,792 bp 88,525 bp

7,925 bp43,054 bp 17,167 bp7,925 bp 19,383 bp 87,529 bp

8,548 bp43,263 bp 21,059 bp8,548 bp 18,647 bp 91,517 bp

7,102 bp48,596 bp 5,765 bp7,102 bp 4,070 bp 65,533 bp

8,811 bp31,620 bp22,885 bp8,811 bp 18,678 bp 81,994 bp

7,568 bp35,065 bp 21,224 bp7,568 bp 19,167 bp 83,024 bp

8,592 bp40,261 bp 22,084 bp8,592 bp 18,914 bp 89,851 bp

4,759 bp27,950 bp 22,547 bp4,759 bp 25,105 bp 80,361 bp

6,702 bp19,982 bp 21,672 bp6,702 bp 21,672 bp 70,028 bp

5,732 bp20,742 bp 19,199 bp5,732 bp 0 bp 45,673 bp

11,865 bp26,435 bp 23,337 bp11,865 bp 26,070 bp 87,707 bp

8,468 bp46,579 bp 23,060 bp8,468 bp 23,669 bp 101,776 bp

8,800 bp48,350 bp 22,210 bp8,800 bp 23,297 bp 102,657 bp

8,547 bp31,017 bp 28,259 bp8,547 bp 26,300 bp 94,123 bp

94,380 bp

7,006 bp32,017 bp20,421 bp7,006 bp 1,503 bp 60,947 bp

8,187 bp32,493 bp 3,778 bp8,187 bp 18,433 bp 62,891 bp

8,365 bp37,337 bp 0 bp8,365 bp 16,602 bp 62,304 bp

10 Ma

ycf1
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