
METHODOLOGICAL
APPLICATIONS

Implications and alternatives of
assigning climate data to geographical
centroids
Daniel S. Park* and Charles C. Davis

Department of Organismic and Evolutionary

Biology, Harvard University, Cambridge,

MA 02138, USA

*Correspondence: Daniel S. Park, Department

of Organismic and Evolutionary Biology,

Harvard University Herbaria, 22 Divinity Ave.

Harvard University, Cambridge, MA 02138,

USA.

E-mail: danielpark@fas.harvard.edu

ABSTRACT

Aim When precise coordinate data for training species distribution models

(SDMs) are lacking, climatic variables are often assigned to centroids of geopo-

litically defined regions, frequently counties. This is problematic because

approximations using centroids may not be representative of the regional cli-

mate or the locality from where species actually occur, thus leading to spurious

conclusions. We evaluated county centroid climate versus simple alternatives

for assigning climate to species observations in the absence of precise occur-

rence data.

Location United States of America.

Methods We assessed the disparity between the actual climate of all points

within a county and metrics estimating county climate using the climate of

geographical centroid, mean county climate and median county climate. To

further evaluate the performance of these metrics, we generated SDMs of four

common species using these estimates and compared the results with observed

species distributions (red trillium, Pacific trillium, tall thistle and annual flea-

bane). Finally, we projected future ranges for annual fleabane to examine the

difference in predicted range change between models.

Results Mean and median climate metrics were significantly better fits for

approximating the climate of specimen records than climate of the geographi-

cal centroid. Moreover, county mean climate SDMs were the most similar to

SDMs using actual coordinate data. In contrast, models applying climate to

county centroid significantly overpredicted species range. This had implications

for future projections of annual fleabane SDMs: the county centroid model

predicted a decrease in suitable habitats for this species while other models pre-

dicted an increase.

Main conclusions County centroid climate, although commonly applied, is

not suitable for SDMs as a means to approximate species climate when locality

data are less precise. When only county level data are available, and more com-

putationally intensive methods of accounting for spatial uncertainty cannot

be readily implemented, we suggest considering mean county climate as an

alternative.
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INTRODUCTION

Characterizing the spatial distribution of species and their

associated environmental requirements is a central compo-

nent of biogeography, conservation biology and ecology. Spe-

cies distribution models (SDMs), also known as ecological

niche models, represent a powerful tool for accomplishing

these goals (Hannah et al., 2002; Pearson & Dawson, 2003;

Sober�on & Peterson, 2005; Elith & Leathwick, 2009; Peterson

& Sober�on, 2012). Despite their utility, however, a major

challenge to developing SDMs has been the availability and

quality of input data (Wolf et al., 2011; Beck et al., 2014;

Fourcade et al., 2014). Although species occurrence data,

which are provided largely by natural history museums (Gra-

ham et al., 2004; Newbold, 2010), are increasingly available

via massive open-access databases such as the Global Biodi-

versity Information Facility (GBIF; www.gbif.org), these

records often exhibit strong geographical, temporal and taxo-

nomic biases (Dennis et al., 2000; Wolf et al., 2011; Isaac &

Pocock, 2015; Meyer et al., 2016). Despite recent efforts to

categorize these biases (Wolf et al., 2011; Meyer et al., 2016),

one key issue has received comparatively less attention:

Whether geographical occurrence data commonly used to

train SDMs accurately reflect the location of the specimen

record, and thus the climate, of where it was collected/ob-

served (Naimi et al., 2011, 2014). Using occurrence records

that are unrepresentative of the climatic conditions species

occupy can lead to potentially spurious conclusions. This is

further confounded by the fact that species occurrence

records are commonly available at less fine scale resolution

than environmental variables (Keil et al., 2013), and the

majority of biological collections and survey information do

not include precise coordinate data (Wieczorek et al., 2004;

Naimi et al., 2014).

Due to the lack of accurate occurrence data, records with

imprecise locality information are routinely approximated to

the centroids of high-order geopolitical regions, such as

states, provinces, municipalities, townships and especially

counties. Alternatively, imprecise localities can also be georef-

erenced to the centroid of a polygon or circle associated with

a locality and/or degree of uncertainty (e.g. point-radius

method; Wieczorek et al., 2004). These centroids often serve

as the location for which climate is extracted and assigned to

the collection record (Fitzpatrick et al., 2007). This practice

commonly ignores the uncertainty inherent in georeferenced

location data by treating these centroids as precise point

occurrences, and by extension assumes accurate knowledge

of the climate variables associated with the locality (Feeley &

Silman, 2010). Such positional uncertainty can lead to spuri-

ous estimations of species–environment relationships (Dor-

mann et al., 2008; Beale & Lennon, 2012; Tulowiecki et al.,

2014), the magnitude of which is determined by the level of

local spatial autocorrelation in the environmental variables

(Naimi et al., 2011, 2014). For example, Montrose County in

Colorado spans the depths of the Black Canyon to the peaks

of the Rocky Mountains, and daily temperatures can vary

over 20 °C between these locations. In such cases, not only

is it unlikely that the centroid accurately represents the envi-

ronmental conditions where the specimen was collected, but

it is unlikely to be a suitable representation of the average

climatic conditions of the region.

Despite these pitfalls, using county centroid values to rep-

resent the climatic conditions appears to have become an

increasingly common practice in SDMs when more precise

coordinate data are lacking (Fitzpatrick et al., 2007; Medley,

2010; Duehl et al., 2011; Zhu et al., 2012; Escobar et al.,

2013; Harrigan et al., 2014; Wells & Tonkyn, 2014). Perhaps,

more pervasive is the unintentional use of county centroids

given their apparent prevalence in data portals like GBIF.

Indeed, an examination of GBIF reveals that nearly half the

coordinate data of certain major groups of organisms in the

United States fall roughly within 20 km of the county cen-

troid (Table 1). In addition, depending on taxonomic group,

40–99% of the coordinates were not assigned quantifiable

metrics of uncertainty. Despite recent calls by GBIF for better

inclusion of indicators of uncertainty for georeferenced data

(Anderson et al., 2016), these results suggest that a poten-

tially large number of studies that use such data are estimat-

ing climate based on localities that are suspect at best.

Indeed, many SDMs are projected at fine spatial resolutions

without accounting for uncertainty, asserting confidence in

outputs that may be misleading (Refsgaard et al., 2007; Sin-

clair et al., 2010; Wenger et al., 2013; Gould et al., 2014).

Importantly, the potential effect of using county centroid

data is seldom, if ever, considered (Costa et al., 2010; Beck

et al., 2014).

Given the critical importance of associating climate to geo-

graphical data especially for SDMs, a broader assessment of

these assumptions needs to be evaluated. Here, we investigate

how well the geographical centroid represents the climatic

conditions of counties and compare these results to simple

alternatives, including utilizing county climate averages (Iver-

son & Prasad, 1998; Ulrichs & Hopper, 2008; Loeb & Win-

ters, 2013). We then extend our analyses to include a

performance assessment of SDMs generated for four com-

mon species in the United States based on centroid climate

and alternative metrics: Red trillium (Trillium erectum L.),

Pacific trillium (T. ovatum Pursh), tall thistle (Cirsium altissi-

mum (L.) Hill) and annual fleabane (Erigeron annuus (L.)

Table 1 Proportion of GBIF occurrence data approximating to
US county centroids. The last column depicts the percentage of

records that do not have any associated measure of uncertainty.

Taxon 2.5 min 5 min 10 min

Uncertainty

not recorded

Mammalia 3% 7% 22% 39%

Tracheophyta 3% 8% 25% 52%

Aves 6% 16% 45% 99%

Fungi 3% 8% 23% 82%

Insecta 6% 15% 38% 70%
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Pers). Finally, we present a case study involving future SDM

projections of annual fleabane to illustrate the different con-

clusions reached using different estimates of county climate.

MATERIALS AND METHODS

Evaluating the prevalence of county centroid

occurrence data

To assess the proportion of occurrence data that may have

been approximated to county centroids, we examined GBIF

records from the United States. The United States is by far

the largest contributor of primary biodiversity data to GBIF

(Anderson et al., 2016). We collected coordinate data from

GBIF for the following major groups of taxa: mammals (class

Mammalia), vascular plants (Tracheophyta), birds (class

Aves), insects (class Insecta) and fungi (kingdom Fungi). For

each of these groups, we then determined the proportion of

these occurrences located within 2.5, 5 and 10 arc-minutes

(roughly corresponding to 5, 10 and 20 km, respectively) of

geographical county centroids, matching the degrees of map

resolutions frequently used in SDMs (e.g. Knowles et al.,

2007; Zhang et al., 2014; Park & Potter, 2015a,b).

Climatic layer analyses

We obtained global data on 19 bioclimatic variables (Nix,

1986; Busby, 1991) from the WorldClim dataset (Hijmans

et al., 2005), at 2.50, 50 and 100 resolutions. WorldClim bio-

climatic layers are among the most frequently used data in

SDM studies. Lower resolutions were not considered because

cell sizes become larger than most counties at coarser grains.

All the geographical points (cells) within each county were

separated onto axes of the 19 bioclimatic variables. We then

calculated the Euclidian distance in this multidimensional

climate space between all points occurring in every US

county and (1) the centroid of the county, (2) the mean cli-

mate of the county, (3) the mean of climate values within

the 95th percentile range in each county, (4) the median cli-

mate of the county and (5) the median of climate values

within the 95th percentile range in each county. The 95th

percentile mean and median climates exclude the more

extreme climate values that occur in each county and were

examined to assess the effects of climatic outliers. These val-

ues were compared with a Kruskal–Wallis one-way analysis

of variance as the data were not all normally distributed. A

post hoc multiple comparison Dunn test was used to further

examine the nature of the significant differences we identified

using the Kruskal–Wallis test. We then performed linear

mixed models to determine which factors predict the degree

of environmental heterogeneity present in counties. Here, we

assigned the average distance in climate space between all

points occurring in each county as the dependent variable.

To account for the spatial autocorrelation present in county

climate heterogeneity, we fit the spatial process to a Gaussian

covariance model and used the model parameters to krige

the data. The kriged projections were then subtracted from

the observed data to yield a de-trended dataset of residuals

on which subsequent models were fit. Predictors examined

include standard deviation of county elevation, mean eleva-

tion, county area, longitude, latitude and distance to coast

(Figs S1–S2 in Appendix S1 in Supporting Information).

Counties comprising less than three cells at each resolution,

as well as those with centroids falling in bodies of water,

were excluded from consideration. We also repeated this

analysis on each individual bioclimatic variable separately.

All analyses were performed using R v3.3.2 (R Core Team,

2016).

Species distribution modelling

To assess performance of county climate estimates in an

SDM framework, we generated SDMs for four easily identi-

fied, common native plant species of North America: red

trillium (Trillium erectum L.), Pacific trillium (T. ovatum

Pursh), tall thistle (Cirsium altissimum (L.) Hill) and annual

fleabane (Erigeron annuus (L.) Pers). These plant species were

selected to represent the heterogeneity present in county size

and climate based on their distributions in the United States.

Trillium erectum L. is an herbaceous perennial widespread in

the northeastern United States; T. ovatum Pursh, also a

perennial, is distributed across the west coast; Cirsium altissi-

mum (L.) Hill, a biennial to short-lived perennial species, is

mainly distributed in the central United States; and Erigeron

annuus (L.) Pers., an annual herb, is widespread across 43 of

the 48 contiguous states of the United States and is consid-

ered a weed in many areas.

Maxent (v3.3.3k; http://www.cs.princeton.edu/~schapir

e/maxent/) is a machine-learning method that searches for

the probability distribution that maximizes entropy in a

dataset of geographical occurrence points in relation to back-

ground environmental variables and can be used to project

relative occurrence probabilities (Phillips et al., 2006). We

applied this approach to model the distribution of species

because it has proven to be effective for presence-only

records and small sample sizes (Hernandez et al., 2006; Wisz

et al., 2008; Guo et al., 2011), and has become the most

widely used method for generating SDMs (Merow et al.,

2013; Fourcade et al., 2014). Also, it has been found to be

robust to moderate levels of georeferencing error and uncer-

tainty (Graham et al., 2008). We cleaned our GBIF occur-

rence records by discarding observations with coordinates

that did not match the listed country/state/county, absent

coordinate data, or coordinates that mapped to open water

outside land boundaries. We selected the following seven

bioclimatic variables strongly associated with the distribution

of species in North America using a correlation coefficient

below 0.75 (following Rissler et al., 2006) to prevent multi-

collinearity and overfitting (Dormann et al., 2013): isother-

mality (BIO2), minimum temperature of the coldest month

(BIO6), mean temperature of the wettest quarter (BIO8),

precipitation of wettest month (BIO13), precipitation
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seasonality (BIO15), precipitation of the warmest quarter

(BIO18) and precipitation of the coldest quarter (BIO19).

For modelling, we used Maxent as implemented in the

‘dismo’ (Hijmans et al., 2011) package in R with default set-

tings and 5000 random background points. While the default

settings for Maxent are not necessarily optimal for all spe-

cies, they are commonly used, and our goal was not to assess

the performance of Maxent per se, but to instead assess per-

formance of models based on imprecise location data accord-

ing to general modelling practices. We conducted up to 5000

simulations to allow the models adequate time to converge.

For each species, SDMs were generated based on (1) all

actual occurrence coordinates, (2) the centroids, (3) the

mean, (4) the mean of climate values within the 95th per-

centile range in each county, (5) the median climate and (6)

the median of climate values within the 95th percentile range

in each county. To assess whether the models based on these

metrics were significantly different from random, SDMs were

also generated from 100 sets of random points from each

county of occurrence to serve as a null model.

Evaluation of model performance

The commonly used SDM evaluation metric, the area under

the receiver operating curve (AUC), is not directly compara-

ble between models generated from disparate datasets (Elith

et al., 2011). Thus, for each species we evaluated each of the

six models proposed above by projecting them onto a map

of the United States and comparing the predicted occurrence

probabilities for (1) actual occurrence points and (2) locales

without collection records (i.e. potential non-occurrence

points). These values were compared among models with a

nonparametric Kruskal–Wallis one-way analysis of variance

and a post hoc multiple comparison Dunn test to further

examine the nature of the observed difference. Furthermore,

for the species for which we were able to collect the most

extensive occurrence data, E. annuus, we inferred its future

distribution in 2050 based on the prediction of the Hadley

Centre Global Environment Model version 2 (HadGEM2-ES,

rcp60; Collins et al., 2011). Next, we compared the difference

between the predicted future and current distributions of E.

annuus for each of our six alternative models. These results

were compared to the predictions of the best-practice model

generated using comprehensive coordinate data, by examin-

ing the sum of all predicted probabilities greater than 0.1,

discarding points with lower occurrence probabilities as

highly unlikely.

RESULTS

Climatic layer analyses

The standard deviation of elevation explained a significant

proportion (R2 > 0.50) of the variation in both the degree of

climatic disparity between county centroids and the rest of

the county, as well as the climatic heterogeneity of the

county in general (Table 2). Mean elevation and longitude

also had significant effects on county climate heterogeneity

(R2 > 0.20), but these variables were highly correlated with

the standard deviation of elevation (Figs S1–S2 in

Appendix S1). The climatic distance between all points in

the county increased with the elevational heterogeneity of the

landscape, and simultaneously the climate of the county cen-

troid was increasingly a poor representative of county cli-

mate (Fig. 1). This effect was significant across all spatial

scales and applied to other estimates of county climate as

well, albeit to a lesser degree (Fig. S3 in Appendix S1). The

effect of county elevation standard deviation on climatic

heterogeneity varied among individual bioclimatic variables,

generally being greater in temperature-related variables than

precipitation-related ones (see Table S1 in Appendix S1).

Other variables, such as distance to coast and county size,

had minimal effects on county climate heterogeneity (Fig. S1

in Appendix S1).

The mean climate of the county, the mean of climate val-

ues within the 95th percentile range in each county, the

median climate of the county and the median of climate val-

ues within the 95th percentile range in each county were clo-

ser in climate space to all points of the county than was the

climatic value of the county geographical centroid (Fig. 2).

The same applied to individual bioclimatic variables at all

resolutions. On average, the county mean was the closest to

all points in the county (Table S2 in Appendix S1).

Species distribution modelling

The SDMs based on the county centroid climate, county

mean climate, 95th percentile county mean climate, county

median climate and the 95th percentile county median cli-

mate projected higher relative climatic suitability onto

known occurrence points on average than models created

with actual coordinate data (Fig. 3). However, there was no

significant difference in the projections between these models

except for Trillium ovatum, where models based on county

centroid data predicted significantly lower relative probabili-

ties at known occurrence points. However, models based on

Table 2 Results of six separate linear mixed models analysing

the effect of the standard deviation of US county elevation on
the degree of disparity between geographical centroid climates

and that of all other areas as well as overall county climate
heterogeneity.

Response Marginal R2 Conditional R2 v2 P-value

Heterogeneity of county climate

2.5 min 0.5755 0.9166 2651.8 < 0.001

5 min 0.5627 0.9083 2541.8 < 0.001

10 min 0.5403 0.8739 2193.0 < 0.001

Disparity of county centroid

2.5 min 0.5690 0.9313 2610.4 < 0.001

5 min 0.5830 0.9214 2689.7 < 0.001

10 min 0.5551 0.8491 2281.1 < 0.001
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county centroid data always assigned significantly higher rel-

ative occurrence probabilities (P < 0.001) to non-occurrence

points (i.e. where there are no known collections of the spe-

cies) than all other models. Models generated with all avail-

able coordinate data were the most conservative in this

regard. In addition, county centroid models did not perform

better than SDMs generated from random points within each

occurrence county on average (Fig. 4, Fig. S4 in

Appendix S1). The relative importance of different biocli-

matic variables to each SDM varied depending on the data

used to train the model (Table S3 in Appendix S1). How-

ever, the variables with the largest influence on species distri-

butions were generally found to be in common.

When the different SDMs of Erigeron annuus were pro-

jected onto a future climate scenario (2050), the SDM based

on county centroid data predicted that the suitable range for

the species would decrease (Fig. 5). In contrast, all other

models, including the model generated using actual occur-

rence point data, predicted an increase. The prediction using

the county mean climate was the closest model to that of the

model using coordinate data.

DISCUSSION

Our analyses indicate that a potentially significant percentage

of the coordinate data in GBIF have been approximated to

county centroids (Table 1). The proportions of coordinates

approximating to county centroids were especially high for

birds and insects, where 15% of the occurrences were

roughly within 10 km of the geographical centre of the
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county. In addition, our results demonstrate that using the

climate of geographical centroids is problematic and that

simple alternative estimates of climate perform significantly

better. Lastly, we show that the use of centroid climate to

model and predict the future distribution of species can dif-

fer dramatically from assessments based on more appropriate

approximations of climate. We outline these findings in

more detail in the following.

Geographical centroids of county are not

representative climate proxies

Our results demonstrate that the climate of the county cen-

troid is a poor representative of county climate. In contrast,

we demonstrate that the mean/median climate of a county

is significantly closer to the centre of the county climate

space and therefore better reflects county climate. Not sur-

prisingly, the relative performance of these metrics is

strongly influenced by the degree of environmental hetero-

geneity within a county. While it has been suggested that

climate estimates for larger counties may be less accurate

when applying climate to county centroid (Harrigan et al.,

2014), we find instead that the standard deviation of eleva-

tion best explains the majority (R2 > 0.50) of climatic

heterogeneity. Whereas many large political areas can show

relatively little variation in climate, such as throughout the

Midwestern United States, elevational gradients often

accompany corresponding variation in key abiotic features,

including temperature and moisture. One concern that

arises in light of these findings is that climatically variable
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montane regions harbour the majority of the biodiversity in

the world and are expected to experience elevated rates of

climate change (Rahbek, 1995; Jenkins et al., 2013; Moun-

tain Research Initiative EDW Working Group, 2015;

Osborne & Mclanahan, 2016). Thus, it is especially impor-

tant to understand the climatic niches of species in these

spatially heterogeneous regions. However, large-scale pat-

terns of species turnover occur across relatively small areas

in montane environments (see Hoorn et al., 2013; Hughes

& Atchison, 2015), and approximating locality data to

regional centroids are likely to result in highly spurious

outcomes. Our results suggest that extra caution should be

exercised with geographical approximations from regions

encompassing highly variable elevations with high regional

species diversity.

SDMs based on geographical centroid climate data

are unreliable

We demonstrated that SDMs based on county mean/median

climate variables perform significantly better than those

applying geographical centroid values and more closely

resemble models generated with actual coordinate data.

Indeed, SDMs based on geographical centroid values tended

to greatly overestimate species range and were often no bet-

ter than models created from random point data (Fig. 4).

This is presumably due to the fact that the geographical cli-

mate centroid can be more or less a random draw from the

environmental heterogeneity present in (especially) large

politically defined geographical areas such as counties

(Fig. 6). Associating randomly assembled environmental data

with species can make them appear capable of tolerating a

wider range of environmental conditions, potentially portray-

ing them as more generalist than they may be. SDMs based

on such data may overestimate the conditions in which spe-

cies persist, yielding generally high probability scores for

both suitable and unsuitable habitats. It is possible that pre-

sumed overestimation of SDMs could be an artefact of false

absences (Gu & Swihart, 2004). Indeed, biological collection/

survey data may not reflect the full distribution of a species.

In this case, we would expect higher mean predicted proba-

bilities at non-occurrence points as the number of false

absences in the data increases. However, in our study, all

four species have well-known ranges and have been collected

extensively, likely minimizing the degree of false absences. In

addition, the number of true absences across the United

States most certainly outnumber undocumented occurrences,

making the effect of false absences minimal when examining

SDM predictions at non-occurrence points. Furthermore, we

demonstrate that the climate at geographical centroids is less

representative of county climatic conditions than mean

county climate (Fig. 2); hence, centroid-based SDMs are

likely to be more inaccurate in their predictions.

These differences can have marked effect on the projec-

tion of future species distributions. As we demonstrate in
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our SDM projections of the future range of the weedy Eri-

geron annuus, the use of geographical centroid results in

dramatic departures from the preferred alternative of using

actual coordinate data (Fig. 5). Along these lines, only the

SDM trained with county centroid climate predicted a

decrease in range. Such discrepancies can have serious

downstream consequences for conservation planning and/or

invasive species management. Unlike county centroid cli-

mate, the mean climate is never a truly incorrect estima-

tion of the climate of any point within a county. Using

county mean climates in SDMs is akin to modelling species

distributions with precise coordinates on lower resolution

climate maps, where the small variations in specific habitat

climates are lost, but the results can still be relevant for

large-scale predictions. All things being equal, the effects of

locational uncertainty on SDM performance are likely to be

more severe for specialist species, as approximate locations,

such as county centroids, will frequently misrepresent their

more specific environmental requirements compared with

generalists with broader climatic niches (Tulowiecki et al.,

2014).

Discarding imprecise data may not be a viable

option

One solution to handling the issues we raise regarding

county-level occurrence data, and uncertain occurrence data

in general, is to discard records beyond a given error thresh-

old (Feeley & Silman, 2010). However, due to the rapid

influx of digitized museum collections (Baird, 2010; Beaman

& Cellinese, 2012; Balke et al., 2013), the global accumula-

tion of occurrence records is likely to far outpace our ability

to efficiently curate and georeference these data manually.

Moreover, it is often impossible to determine whether a

specimen was actually collected at the given location, or geo-

referenced to the location of a geographical approximation

like county centroid. For example, in the effort to map all

mammal collections as part of the Mammal Networked

Information System (http://manisnet.org/), 78.4% of the

records that had coordinate data were found to have no

associated metadata regarding the localities, nor did they

include information about the methods and assumptions

involved in assigning coordinates (Wieczorek et al., 2004).

We further confirm this issue in other groups as well

(Table 1). Perhaps most importantly, the paucity of accurate

occurrence records for many species makes discarding

records unpalatable for most researchers, and resources are

likely to be scarce for broad systematic field surveys to better

document biodiversity (Phillips et al., 2009). This is espe-

cially so for studies with a temporal component such as

those using specimens to examine phenological change

(Davis et al., 2015) or species distributional changes over

time (L€utolf et al., 2006).

A better approach going forward is to revamp our mod-

els to improve workflows for handling coarse-level occur-

rence data. Various methods have been suggested towards

this end, from restricting ranges using a priori knowledge of

species habitat preferences (Jetz et al., 2007; Niamir et al.,

2011; Rondinini et al., 2011) or physiological tolerances

(Kearney & Porter, 2009), to bootstrapping approaches

(Fern�andez et al., 2013). Among these, Bayesian methods

that account for uncertainty in occurrence data are espe-

cially promising (e.g. McInerny & Purves, 2011; Beale &

Lennon, 2012; Keil et al., 2013; Vel�asquez-Tibat�a et al.,

2016). These approaches represent the best current standard

of practice but are often more computationally demanding

compared with alternative SDM approaches, making them

relatively difficult to implement on a large scale (Vel�asquez-

Tibat�a et al., 2016). Bayesian methods also require addi-

tional information, such as estimations of uncertainty or

absence data, which are unavailable for many species

(Table 1). Furthermore, incorporating such methods with

commonly used SDM approaches, such as Maxent, remain

a challenge (Keil et al., 2013).

Along these lines, when dealing with large-scale SDM

analyses, a simpler approach could be to summarize covari-

ate data at the unit of sampling (e.g. county) by using

measures of central tendency, such as the mean or median

of continuous data (Young et al., 2009). While not prefer-

able to Bayesian approaches or more intricate means of

georeferencing, we have demonstrated that the mean is a

better option than using geographical centroid values to

represent the climate of an area and exhibits superior per-

formance in SDMs. A bootstrapping approach where ran-

dom locations within a county are repeatedly sampled

would yield similar results, with the added benefit of prop-

agating uncertainty through the modelling approach. How-

ever, in large-scale modelling efforts such as those involving

thousands of different species with large distributions (e.g.

Zhang et al., 2016), bootstrapping could become impracti-

cal. Nonetheless, issues of computational efficiency regard-

ing Bayesian or bootstrapping approaches may be of little

consequence in the near future with improving processor

speeds, availability of multithreading processing technology

and more efficient sampling algorithms (Vel�asquez-Tibat�a

et al., 2016). In the meantime, for the purposes of large-

scale SDM studies, mean climate can provide a simple

alternative that is significantly better than the climate of

geographical centroids, especially when a priori knowledge

of the species and computational resources are limited.

Above all, our results further highlight the need for better

data standards regarding the accuracy and treatment of geo-

referenced locality data.
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