Freezing and water availability structure the evolutionary diversity of trees across the Americas

R. A. Segovia ${ }^{1,2}$, R. T. Pennington ${ }^{3,4}$, T. R. Baker ${ }^{5}$, F. Coelho de Souza 5, D. M. Neves ${ }^{6}$, C. C. Davis ${ }^{7}$, J. J. Armesto ${ }^{2,8}$, A. T. Olivera-Filho ${ }^{6}$, K. G. Dexter ${ }^{1,3}$
1 School of GeoSciences, University of Edinburgh, United Kingdom.
2 Instituto de Ecología y Biodiversidad (www.ieb-chile.cl), Santiago, Chile.
3 Tropical Diversity Section, Royal Botanic Garden Edinburgh, United Kingdom.
4 Department of Geography, University of Exeter, United Kingdom.
5 School of Geography, University of Leeds, Leeds, United Kingdom.
6 Department of Botany, Federal University of Minas Gerais, Brazil.
7 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.
8 Departamento de Ecología, Universidad Católica de Chile, Santiago and Facultad Ciencias Naturales and Oceanográficas, Universidad de Concepción, Chile.
* ricardo.segovia@ed.ac.uk

Abstract

The historical course of evolutionary diversification shapes the current distribution of biodiversity, but the main forces constraining diversification are unclear. We unveil the evolutionary structure of tree species diversity across the Americas to assess whether an inability to move (dispersal limitation) or to evolve (niche conservatism) is the predominant constraints in plant diversification and biogeography. We find a fundamental divide in tree lineage composition between tropical and extratropical environments, defined by the absence versus presence of freezing temperatures, respectively. Within the Neotropics, we uncover a further evolutionary split between moist and dry forests. Our results demonstrate that American tree lineages, though broadly distributed geographically, tend to retain their ancestral environmental relationships and that phylogenetic niche conservatism is the primary force structuring the distribution of tree biodiversity.

Main text

A central challenge in biogeography and macroevolution is to understand the primary forces that drove the diversification of life. Was diversification confined within continents, and characterized by adaptation of lineages to different major environments (i.e., biome switching), or did lineages tend to disperse across great distances, but retain their ancestral environmental niche (i.e., phylogenetic niche conservatism)? Classically, the attempts to define biogeographic regions based on shared plant and animal distributions lend support to the first hypothesis, that large-scale patterns may be explained by regionally confined evolutionary diversification, rather than long-distance dispersal (1-3).
Alternatively, recent studies of the distribution of plant lineages at global scales have documented high levels of inter-continental dispersal (e.g., 4-8), and revealed that lineages tend to retain their ancestral biomes when dispersing $(9,10)$. These latter findings suggest that dispersal is not limited in plants and that strong environmental associations of lineages may be the primary force organizing the course of diversification. However, there remain relatively few studies comparing the degree of evolutionary similarity between species

With high mountain chains running north to south across a mosaic of

Here, we examine the phylogenetic composition of angiosperm tree assemblages across the Americas as a means to determine whether dispersal limitation or phylogenetic niche conservatism had greater impact on the
present-day evolutionary structure of biodiversity. If lineages tend to retain their environmental niche as they diversify across space, we would expect major evolutionary groups to be restricted to specific biomes, and for their
distributions to mirror that of their preferred environmental regime. This leads to the prediction that lineage composition of assemblages from extratropical regions in both hemispheres should be more similar to each other than to assemblages occurring in intervening tropical regions. In addition, we would predict that assemblages from arid tropical environments across the Neotropics should show greater similarity in tree lineage composition than to assemblages from moist environments with which they may be spatially contiguous or interdigitated (19). Alternatively, if diversification is spatially restricted and biome switching is common, the major evolutionary grouping of assemblages should be segregated geographically, irrespective of environmental conditions, and we might expect, for example, because of the physical isolation of South America through the Cenozoic, that its assemblages constitute one group and North and Central American assemblages another.

To test the contrasting scenarios of phylogenetic niche conservatism and biome switching, we analyzed data on $\sim 10,000$ tree assemblages, largely compiled from vegetation inventories (see Materials and Methods), from locations spanning extensive geographic and environmental gradients in the Americas. We constructed a temporally-calibrated, genus-level phylogeny that includes as many of the inventoried angiosperm tree genera as possible (1,358 total; an average of $\sim 90 \%$ of the genera sampled per assemblage). We assessed similarity in lineage composition among assemblages using clustering analyses and ordinations based on shared evolutionary history, quantified as shared phylogenetic branch length. Next, we identified the indicator lineages for each major group in the clustering analysis. Finally, we explored the geographic and environmental correlates of the distribution of the main evolutionary clusters, and estimated their unique versus shared evolutionary diversity. The former indicates the total amount of diversification, or phylogenetic branching, that has occurred within lineages that are largely restricted to individual evolutionary groups, while the latter represents diversification in lineages that span evolutionary groups, including that shared across all evolutionary groups.

Our results suggest that the evolutionary lineage composition of American tree assemblages is structured primarily by phylogenetic niche conservatism. The two principal clusters of tree assemblages defined by similarity in evolutionary lineage composition have a tropics-extratropics structure (Fig. 1, Fig. S4). Moreover, the extratropical group is not geographically segregated,

Figure 1. The geographic, evolutionary and environmental relationships between the principal two evolutionary groups (from $K=2$ clustering analysis). A) Geographic distribution of angiosperm tree assemblages and their affiliation with either of the two principal evolutionary groups, tropical ($\mathrm{n}=$ 7145) or extratropical ($\mathrm{n}=2792$); B) Distribution of assemblages over elevation and latitude showing that the extratropical group is largely restricted to high elevations at low latitudes; C \& D) Distribution of of assemblages over first two axes of an ordination based on evolutionary composition with assemblages in C colored according to group affiliation and in D as whether or not they experience freezing temperatures in a regular year (from (24)).
because it includes temperate tree assemblages from forests of North America and southern South America connected by a corridor of high-elevation forests via mountain chains across the Andes and Central America (Fig. 1 a,b). In order to test the correspondence of these two main clusters with environmental or geographical variables, we compared them with the eight data layers proposed by (24) to separate the extratropics from the tropics. We found the strongest correspondence (97% match, Fig. S1) with the occurrence, or absence, of freezing temperatures within a typical year (see Fig. 1 c,d). In assessing evolutionary diversity, measured as summed phylogenetic branch length, either restricted to or shared between these two groups, we observe that most evolutionary diversity occurs within the tropics, but that there is unique S3a). Ordination and indicator clade analyses revealed that the
tropics-extratropics segregation is associated with the distribution of specific

Figure 2. The geographic, evolutionary and environmental relationships among four evolutionary groups (from $K=4$ clustering analysis). A) Geographic distribution of angiosperm tree assemblages and their affiliation with one of the four evolutionary groups; B) Euler Diagram representing the amount of evolutionary history, measured as phylogenetic diversity (in millions of years), restricted to each cluster versus that shared between clusters; C) Distribution of assemblages over extremes of temperature (minimum temperature of coldest month) and water availability (maximum climatological water deficit, CWD). Lines represent the 95 th quantile of the density of points for each group.

Our clustering analyses identified that $\mathrm{K}=3$ and $\mathrm{K}=4$ groups are also supported as additional informative splits, with subsequent partitions of the data resulting in little additional information explained (Fig. S2). Each of the major groups in $\mathrm{K}=3$ and $\mathrm{K}=4$ captures substantial unique evolutionary diversity (Fig. 2 b, Fig. S3, Table S2). In $\mathrm{K}=3$, the main extratropical cluster grouped assemblages from North America and extreme southern South America, while the remaining assemblages from temperate southern South America and the Andean tropics grouped with assemblages from the arid or semiarid tropics and subtropics and the moist tropics formed a third group (Fig. S5). For K=4, the extratropics were splits into a largely temperate North American group and a group that includes subtropical sites in South and Central America, the Andes and southern temperate forests. In the tropics there is one group including assemblages found in ever-moist and warm conditions, and a second one of assemblages that extend into drier areas (Fig. 2 c), including most tropical dry forest (Fig. 2 a; Fig. S6; Table S3). Hereafter, we refer to the four clusters of assemblages in $\mathrm{K}=4$ as the Northern Extratropical, Southern Extratropical,

Tropical and Extratropical conservatism

Phylogenetic niche conservatism drives two key processes structuring the distribution of tree diversity in the Americas. First, it constrains the diversification within the tropics or extratropics and, second, it organizes the recent migrations of extratropical lineages tracking their preferred environments into low latitudes. Our results demonstrate that the tropics-extratropics evolutionary structure of tree diversity is principally associated with the environmental threshold of the presence or absence of freezing temperatures in a typical year. This pattern is consistent with evidence documenting that only angiosperm lineages that were able to evolve traits to avoid freezing-induced embolism radiated into high latitudes (25). In addition, we found that a unique, sizeable portion of the total evolutionary diversity of angiosperm trees is restricted to extratropical environments, as the fossil record corroborates $(26,27)$. Collectively, this evidence suggests that the phylogenetic conservatism of lineages from the extratropics has a major relevance for the diversification of angiosperm trees in the Americas. Kerkhoff et al. (2014) estimated that in the extratropical region (defined as those distributed north of $23^{\circ} \mathrm{N}$ and south of $23^{\circ} \mathrm{S}$) angiosperm ancestors produced extratropical descendants at least 90% of the time. Considering that some areas subjected to regular freezing at high elevations in equatorial latitudes may be better classified as part of the extratropics, as demonstrated here by our results, the extratropical phylogenetic conservatism could even be greater (16).

While the effect of tropical phylogenetic niche conservatism on patterns of biodiversity distribution has been broadly discussed (e.g., follow the references to (28)), the role of extratropical conservatism has received less attention. However, some studies illustrate that lineages tracking extratropical environments in high tropical mountains can shape patterns in the distribution of phylogenetic diversity across these elevation gradients (29). In the Americas, the relatively recent uplift of the Andes (30) would have created novel, extratropical environments (i.e., with regular freezing temperatures) at low latitudes, allowing lineages previously diversified at high latitudes to move from both north and south to equatorial latitudes (31). Fossil pollen demostrates the arrival in the northern Andes of tree genera from temperate forests in the northern hemisphere, including Juglans (Juglandaceae), Alnus (Betulaceae) and Quercus (Fagaceae), at about 2.2 Ma, 1.0 Ma and 300 Ka respectively, and the arrival of southern genera, including Weinmannia (Cunoniaceae) and Drymis
(Winteraceae), during the late Pliocene and Pleistocene (1.5-3.2 Ma) $(31,32)$. Likewise, phylogenetic evidence shows recent diversification in the Andes of lineages that seem to have originated in the extratropics, including Lupinus (Fabaceae) (33), Adoxaceae/Valerianceae $(34,35)$ and Gunnera (Gunneraceae) (36).

Pattern within the Neotropics

Our results also point to a moist versus dry evolutionary divide within the Neotropics. The Tropical Moist Group holds the greatest amount of evolutionary diversity, both overall and unique to it, despite occupying the most restricted extent of climatic space of any of the $\mathrm{K}=4$ groups (Fig. $2 \mathrm{~b}, \mathrm{c}$). The Tropical Dry Group, in contrast, extends across a broader climatic space, but holds less evolutionary diversity (Fig. $2 \mathrm{~b}, \mathrm{c}$). This asymmetry in the accumulation of diversity may reflect phylogenetic conservatism for a putatively moist and hot ancestral angiosperm niche (28), or could result from a favorable environment that can be occupied by any angiosperm lineage, even those that also occur in cooler or drier conditions $(37,38)$. Regardless, the similarity in the lineage composition of the extensive but discontinuously distributed tropical dry

Figure 3. Phylogenetic ordination of tree assemblages based on their evolutionary lineage composition. Colors in the main plot represent the groups from $\mathrm{K}=4$ clustering analyses and the different symbols represent major vegetation formations. The subset plot shows the clades most strongly associated with the first two axes of the evolutionary ordination.
forests (19), indicates their separate evolutionary history. Although tropical dry forest inhabiting taxa have often been described as more dispersal-limited than those from rain forests (e.g., 19), dispersal over evolutionary time-scales seems to have been sufficient to maintain this floristic cohesion. Such evolutionary isolation of the dry forest flora has previously been suggested by studies in Fabaceae $(19,39)$, and is shown here to be evident at the evolutionary scale of all angiosperm tree species.

Our results also help to clarify the contentious evolutionary status of savanna and Chaco regions in Neotropics. On one hand, we find that the southern savannas (the Cerrado region of Brazil) are more evolutionary related to tropical moist forests than dry forests (Fig. 2 a, Fig. S5). This finding agrees with previously suggested evolutionary links between the tropical savanna and moist forest biomes (39), and more specifically with evolutionary biome switching from moist forests to Cerrado savannas (22). However, northern tropical savannas (i.e., Llanos of Venezuela and Colombia and those in Central America) are split in their evolutionary affiliation between the Tropical Moist and Tropical Dry groups, indicating linkages to moist and dry tropical forests (Fig. 3, Table S1). Accordingly, this may reflect the distinct ecology of many northern savannas (e.g., the Llanos are hydrological savannas; 40) and suggest a divergent evolutionary history for northern and southern savannas. On the other hand, our results help to resolve the debates around the status of the Chaco, which has been suggested to be a distinct biome with temperate evolutionary affinities or as part of a wider dry forest biome (e.g., 41-43). Our results show that this geographically defined region houses a mix of extratropical and tropical lineages. Indeed, our analyses consistently point to evolutionary links between assemblages in seasonally dry and seasonally cold areas (Fig. 2, S5, S6). For example, when we consider $\mathrm{K}=3$ evolutionary groups, a single 'dry and cool' group coalesces, with the other two groups being the tropical moist forest group and a largely northern, extratropical group (Fig. S5).

We show that the evolutionary structure of tree diversity in the Americas is determined primarily by the presence or absence of freezing temperatures, dividing tropical from extratropical regions. Within the tropics we find further subdivision among lineages experiencing moist versus seasonally-dry conditions. These findings strongly demonstrate that phylogenetic niche conservatism is the primary force organizing the diversification and, therefore, the biogeography of angiosperm trees. Tree species that can inhabit areas experiencing freezing temperatures and/or environments subjected to seasonal water stress belong to a restricted set of phylogenetic lineages, which gives a unique evolutionary
identity to extratropical forests and tropical dry forests in the Americas. While our study is restricted to the New World, we suggest that plant biodiversity globally may be evolutionarily structured following a tropics-extratropics pattern, while diversity within the tropics may be structured primarily around a moist-dry pattern. These findings advocate strongly for integrating the concept of extratropical conservatism and tropical-dry conservatism into our understanding of macroevolutionary trends and biogeographic patterns at intercontinental scales.

Materials and Methods

Tree assemblage dataset

Our tree assemblage dataset was derived by combining the NeoTropTree (NTT) database (44) with selected plots from the Forest Inventory and Analysis (FIA) Program of the U.S. Forest Service (45), accessed on July 17th, 2018 via the BIEN package (46). We excluded from the latter any sites that had less than five angiosperm genera. Sites in the NTT database are dened by a single vegetation type within a circular area of 5 -km radius and contains records of tree and tree-like species, i.e., freestanding plants with stems that can reach over 3 m in height (see www.neotroptree.info and (47) for details). Each FIA plot samples trees that are $\geq 12.7 \mathrm{~cm}$ diameter at breast height (dbh) in four subplots (each being 168.3 m 2) that are 36.6 m apart. We aggregated plots from the FIA dataset within 10 km diameter areas, to parallel the spatial structure of the NTT database. This procedure produced a total dataset of 9937 tree assemblages distributed across major environmental and geographic gradients in the Americas.

Genera phylogenetic tree

We obtained sequences of the rbcL and matK plastid gene for 1358 angiosperm tree genera, from Genbank (www.ncbi.nlm.nih.gov/genbank/), building on previous large-scale phylogenetic efforts for angiosperm trees in the Neotropics $(48,49)$. Sequences were aligned using the MAFFT software (50). 'Ragged ends' of sequences that were missing data for most genera were manually deleted from the alignment.

We estimated a maximum likelihood phylogeny for the genera in the
RAxML v8.0.0 software (51), on the CIPRES web server (www.phylo.org). We constrained the tree to follow the order-level phylogeny in Gastauer et al. (2017)
(52), which is based on the topology proposed by the Angiosperm Phylogeny Group IV. We concatenated the two chloroplast markers following a General Time Reversible (GTR) + Gamma (G) model of sequence evolution. We included sequences of Nymphaea alba (Nymphaeaceae) as an outgroup.

We temporally calibrated the maximum likelihood phylogeny using the software treePL (53). We implemented age constraints for 320 internal nodes (family-level or higher, from (54)) and for 123 genera stem nodes (based on ages from a literature survey, Table S4). The rate smoothing parameter (lambda) was set to 10 based on a cross-validation procedure. The final dated tree can be found in Supplementary Information.

Phylogenetic distance analysis and clustering

We used the one complement of the Phylo-Sorensen Index (i.e., 1 -
Phylo-Sorensen) to build a matrix of phylogenetic dissimilarities between plots based on genera presence-absence data. The Phylo-Sorensen index sums the total branch length of shared clades between sites (55) relative to the sum of branch lengths of both sites:

$$
\text { Complement of Phylo - Sorensen } i j=1-B L i j / 0.5 *(B L i+B L j)
$$

where $\mathrm{BLij}^{\mathrm{j}}$ is the sum of branch lengths shared between plots i and j , and BLi and BLj are the sum of branch length of tips within plots i and j, respectively. Thus, if all branches are shared between two plots, the dissimilarity measure takes on a value of 0 . If no branches are shared between plots (i.e. the plots comprise two reciprocally monophyletic clades), the dissimilarity measure will take on a value of 1 . This metric was estimated using the phylosor.query () function in the PhyloMeasures (56) package for R.

We used K-means clustering to explore the main groups, in terms of (dis)similarity in the tree assemblage dataset, according to the Phylo-Sorensen dissimilarity measures. The K-means clustering algorithm requires the number of clusters (K) to be specified in advance. In order to estimate the best value for K , the optimal number of clusters to parsimoniously explain the variance in the dataset, we used the Elbow Method and an approach based on the average Silhouette width (Fig. S2). Based on these results, we selected $\mathrm{K}=2$ (Fig. 1), $\mathrm{K}=3$ (Fig. S5) and $\mathrm{K}=4$ (Fig. 2) for further analysis and interpretation. No geographic or environmental data were used to inform the clustering analyses. The K-means clustering was carried out with the kmeans() function in base R (R Core Development Team, 2016). We assessed the robustness of the K-means
clustering results using a silhouette analysis with functions in the "cluster" package (57). In order to assess variation in group fidelity, we classified individual sites as to whether the silhouette widths were larger or smaller than 0.2 . In this way, we could detect areas of geographic, environmental and compositional space where clustering results were strongly or weakly supported.

In addition, we performed an evolutionary ordination of tree assemblages based on their phylogenetic lineage composition, following protocols developed by Pavoine (2016) (58). We specifically used an evolutionary PCA, implemented with the evopca() function in the "adiv" package, with a Hellinger transformation of the genus by site matrix, as this is a powerful approach to detect phylogenetic patterns along gradients, while also allowing positioning of sites and clades in an ordination space (58). The first two axes explained 9.6% and 6.7% of the variation in the data, with subsequent axes each explaining $<5.5 \%$.

Correspondence between clustering results and environmental variables

We tested the correlation between our $\mathrm{K}=2$ clustering result and eight different delimitations of the tropics, as per Feeley and Stroud (2018) (24). These delimitations were: C 1) all areas between $23.4^{\circ} \mathrm{S}$ and $23.4^{\circ} \mathrm{N}$; C2) all areas with a net positive energy balance; C3) all areas where mean annual temperature does not co-vary with latitude; C4) all areas where temperatures do not go below freezing in a typical year; C5) all areas where the mean monthly temperature is never less than $18^{\circ} \mathrm{C} ; \mathrm{C} 6$) all areas where the mean annual "biotemperature" $\geq 24{ }^{\circ} \mathrm{C}$; C7) all areas where the annual range of temperature is less than the average daily temperature range; C8) all areas where precipitation seasonality exceeds temperature seasonality. We calculated the correspondence between our binary clustering (i.e. tropical vs. extratropical) and each of these delimitations as the proportion of sites where the delimitations matched.

To assess the environmental space occupied by different groups from our clustering analyses, we obtained estimates of mean annual temperature, mean annual precipitation and minimum temperature of the coldest month from the Worldclim dataset (59) and Maximum Climatological Water Deficit (CWD) from Chave et al. (2014) (60). We estimated the density of the distribution of sites in the environmental space using ellipses containing 95% of the sites with the kde() function from "ks" package (61).

Shared versus Unique "Phylogenetic Diversity" (PD)

As the Phylo-Sorensen estimation of evolutionary (dis)similarity cannot distinguish variation associated to differences in total phylogenetic diversity (PD), or phylogenetic richness versus variation associated to phylogenetic turnover per se, we measured the shared and unique PD associated with each group for the $\mathrm{K}=2, \mathrm{~K}=3$ and $\mathrm{K}=4$ clustering analyses. First, we estimated the association of genera with each group by an indicator species analysis following de Caceres et al. (2009) (62). Specifically, we used the multipatt() function in the R Packages indicspecies (63) to allow genera to be associated with more than one group (when $K>2$). The output of the multipatt function includes the stat index, which is a function of the specificity (the probability that a surveyed site belongs to the target site group given the fact that the genus has been found) and fidelity (the probability of finding the genus in sites belonging to the given site group). We constructed pruned phylogenies including those genera with specificity greater than 0.6 to a group, or combination of groups, to estimate the total PD found in each group or combination of groups. Then, we subtracted these totals from the total for the complete, unpruned phylogeny to determine the amount of phylogenetic diversity restricted to each group, or combination of groups. Finally, we estimated the PD shared across all groups as that which was not restricted to any particular group or any combination of groups. We fit these different PD totals as areas in a Euler diagram with the euler() function in the "eulerr" package (64) for the $\mathrm{K}=2$ and $\mathrm{K}=3$ clustering, and with the $\operatorname{Venn}()$ fuction in the "venn" package (65) for the $\mathrm{K}=4$ clustering. ${ }^{348}$

Indicator lineages for clusters

In order to further characterise the composition of the evolutionary groups, we conducted an indicator analysis to determine the clades most strongly associated with each group. We created a site x node matrix (see function used in Appendix 1), which consists of a presence/absence matrix for each internal node in the phylogeny and ran an indicator analysis for the nodes. We selected the highest-level, independent (i.e. non-nested) nodes with the highest stat values to present in Tables S1 and S2. The indicator node analysis was carried out with function multipatt() in the R Package indicspecies (63).

References

1. Wallace, A.R. (1876). The geographical distribution of animals: With a study of the relations of living and extinct faunas as elucidating the past changes of the earth's surface. Harper; brothers.
2. Takhtajan, A. (1986). Floristic regions of the world. Berkeley, etc.:(Transl. by TJ Crovello.) Univ. Calif. Press, 581, 1.
3. Holt, B.G., Lessard, J.-P., Borregaard, M.K., Fritz, S.A., Araujo, M.B. Dimitrov, D., Fabre, P.H., Graham, C.H., Graves, G.R., Jønsson, K.A. Nogués-Bravo, D. (2013). An Update of Wallace's Zoogeographic Regions of the World. Science, 339, 74-78.
4. Morley, R. (2003). Interplate dispersal paths for mega thermal angiosperms. Perspectives in Plant Ecology Evolution and Systematics, 6, 5-20.
5. Pennington, R.T. Dick, C.W. (2004). The role of immigrants in the assembly of the South American rainforest tree flora. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359, 1611-1622.
6. Renner, S. (2004). Plant dispersal across the tropical Atlantic by wind and sea currents. International Journal of Plant Sciences, 165, S23-S33.
7. Lavin, M., Schrire, B.P., Lewis, G., Pennington, R.T., Delgado-Salinas, A., Thulin, M., Hughes, C.E., Matos, A.B. Wojciechowski, M.F. (2004). Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359, 1509-1522.
8. Slik, J.F., Franklin, J., Arroyo-Rodríguez, V., Field, R., Aguilar, S. Aguirre, N. et al. (2018). Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences USA, 115, 1837-1842.
9. Crisp, M.D., Arroyo, M.T.K., Cook, L.G., Gandolfo, M.A., Jordan, G.J., McGlone, M.S., Weston, P.H., Westoby, M., Wilf, P. Linder, H.P. (2009). Phylogenetic biome conservatism on a global scale. Nature, 458, 754-U90.
10. Gagnon, E., Ringelberg, J.J., Bruneau, A., Lewis, G.P. Hughes, C.E. (2018). Global succulent biome phylogenetic conservatism across the pantropical Caesalpinia group (Leguminosae). New Phytologist, 222, 1994-2008.
11. Axelrod, D. (1984). An interpretation of Cretaceous and Tertiary biota in polar-regions. Palaeogeography Palaeoclimatology Palaeoecology, 45, 105-147.
12. Thorne, R.F. (1992). Classification and geography of the flowering plants. The Botanical Review, 58, 225-327.
13. McLoughlin, S. (2001). The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49, 271-300.
14. San-martin, I. Ronquist, F. (2004). Southern Hemisphere biogeography inferred by event-based models: Plant versus animal patterns. Systematic biology, 53, 216-243.
15. Jaramillo, C. Cárdenas, A. (2013). Global warming and neotropical rainforests: A historical perspective. Annual Review of Earth and Planetary Sciences, 41, 741-766.
16. Kerkhoff, A.J., Moriarty, P.E. Weiser, M.D. (2014). The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proceedings of the National Academy of Sciences USA, 111, 8125-8130.
17. Jardine, P.E., Harrington, G.J., Sessa, J.A. Daskova, J. (2018). Drivers and constraints on floral latitudinal diversification gradients. Journal of Biogeography, 45, 1408-1419.
18. Antonelli, A., Zizka, A., Carvalho, F. A., Scharn, R., Bacon, C. D., Silvestro, D., Condamine, F. L. (2018). Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences, 115(23), 6034-6039.
19. Pennington, R.T., Lavin, M. Oliveira-Filho, A. (2009). Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annual Review of Ecology, Evolution, and Systematics, 40, 437-457.
20. Särkinen, T., Pennington, R. T., Lavin, M., Simon, M. F., Hughes, C. E. (2012). Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. Journal of Biogeography, 39, 884-900.
21. Willis, C. G., Franzone, B. F., Xi, Z., Davis, C. C. (2014). The establishment of Central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico. Frontiers in genetics, 5, 433.
22. Simon, M.F., Grether, R., Queiroz, L.P. de, Skema, C., Pennington, R.T. Hughes, C.E. (2009). Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences USA, 106, 20359-20364.
23. Maurin, O., Davies, T.J., Burrows, J.E., Daru, B.H., Yessoufou, K., Muasya, A.M., Bank, M. Bond, W.J. (2014). Savanna fire and the origins of the "underground forests" of Africa. New Phytologist, 204, 201-214.
24. Feeley, K. J., Stroud, J. T. (2018). Where on Earth are the "tropics"?. Frontiers of Biogeography, 10(1-2).
25. Zanne, A.E., Tank, D.C., Cornwell, W.K., Eastman, J.M., Smith, S.A., FitzJohn, R.G., McGlinn, D.J., O'Meara, B.C., Moles, A.T., Reich, P.B. Royer, D.L. (2014). Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92.
26. Germeraad, J., Hopping, C. Muller, J. (1968). Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology, 6, 189-348.
27. Romero, E.J. (1986). Paleogene phytogeography and climatology of South-America. Annals of the Missouri Botanical Garden, 73, 449-461.
28. Wiens, J. J., Donoghue, M. J. (2004). Historical biogeography, ecology and species richness. Trends in ecology evolution, 19(12), 639-644.
29. Qian, H., Ricklefs, R. E. (2016). Out of the tropical lowlands: latitude versus elevation. Trends in ecology evolution, 31(10), 738-741.
30. Gregory-Wodzicki, K. (2000). Uplift history of the Central and Northern Andes: A review. Geological Society of America Bulletin, 112, 1091-1105.
31. Van der Hammen, T., Werner, J. Van Dommelen, H. (1973). Palynological record of the upheaval of the northern Andes: A study of the Pliocene and lower Quaternary of the Colombian eastern cordillera and the early evolution of its high-Andean biota. Review of Palaeobotany and Palynology, 16, 1-122.
32. Hooghiemstra, H. (1989). Quaternary and upper-Pliocene glaciations and forest development in the tropical Andes: Evidence from a long high-resolution pollen record from the sedimentary basin of Bogotá, Colombia. Palaeogeography, Palaeoclimatology, Palaeoecology, 72, 11-26.
33. Hughes, C. Eastwood, R. (2006). Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences USA, 103, 10334-10339.
34. Moore, B.R., Donoghue, M.J. (2007). Correlates of diversification in the plant clade Dipsacales: geographic movement and evolutionary innovations. The American Naturalist 170, S28-S55.
35. Bell, C. D., Kutschker, A., Arroyo, M.T.K. (2012). Phylogeny and diversification of Valerianaceae (Dipsacales) in the southern Andes. Molecular Phylogenetics and Evolution 63, 724-737.
36. Bacon, C. D., Velásquez-Puentes, F. J., Hinojosa, L. F., Schwartz, T., Oxelman, B., Pfeil, B., Arroyo, M.T.K., Wanntorp, L. Antonelli, A. (2018). Evolutionary persistence in Gunnera and the contribution of southern plant groups to the tropical Andes biodiversity hotspot. PeerJ, 6, e4388.
37. Honorio-Coronado, E. N., Dexter, K. G., Pennington, R. T., Chave, J., Lewis, S. L., Alexiades, M. N., Alvarez, E., Alves de Oliveira, A., Amaral, I.L., Araujo-Murakami, A. Arets, E. J. (2015). Phylogenetic diversity of Amazonian tree communities. Diversity and Distributions, 21(11), 1295-1307.
38. Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Steege, H. ter Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Brienen, R., Feldpausch, T.R., Pitman, N. Alonso, A. (2017). Seasonal drought limits tree species across the Neotropics. Ecography, 40, 618-629.
39. Schrire, B., Lavin, M. Lewis, G. (2004). Global distribution patterns of the Leguminosae: Insights from recent phylogenies. In: Plant diversity and complexity patterns: Local, regional and global dimensions (ed. Friis, B., I.). Biologiske Skrifter; Biologiske Skrifter, pp. 375-422.
40. Pennington, R. T., Lewis, G. P., Ratter, J. A. (2006). An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forests. In Neotropical savannas and seasonally dry forests (pp. 17-45). CRC press.
41. Neves, D. M., Dexter, K. G., Pennington, R. T., Bueno, M. L., Oliveira Filho, A. T. (2015).

Environmental and historical controls of floristic composition across the South American Dry Diagonal. Journal of Biogeography, 42(8), 1566-1576.
42. DRYFLOR (2016). Plant diversity patterns in neotropical dry forests and their conservation implications. Science, 353(6306), 1383-1387.
43. Kuemmerle, T., Altrichter, M., Baldi, G., Cabido, M., Camino, M., Cuellar, E., Cuellar, R.L., Decarre, J., Díaz, S., Gasparri, I. Gavier-Pizarro, G. (2017). Forest conservation: remember Gran Chaco. Science, 355(6324), 465-465.

Supplementary Materials

Freezing and water availability structure the evolutionary diversity of trees across the Americas

R. A. Segovia (ricardo.segovia@)ed.ac.uk), R. T. Pennington, T. R. Baker, F. Coelho de Souza, D. M. Neves, C. C. Davis, J. J. Armesto, A. T. Olivera-Filho \& K. G. Dexter

1) Table S1 Indicator clades for $K=2$ groups.
2) Table S2 Indicator clades for $K=4$ groups.
3) Table S3 Affiliation of principal vegetation formations in the tropics with the two main tropical groups from the $\mathrm{K}=4$ clustering analysis.
4) Table S4. Stem ages for genera nodes used to callibrate the phylogenetic tree.
5) Figure S1 Fig. S1. Match between tropics vs. extratropics groups from $\mathrm{K}=2$ clustering and eight delimitations of the tropics.
6) Figure S2 Selection of number of clusters.
7) Figure S3 Shared versus unique Phylogenetic Diversity for $K=2$ and $K=3$ clustering analyses.
8) Figure S4 Clustering $K=2$.
9) Figure S5 Clustering $\mathrm{K}=3$.
10) Figure S6 Clustering $K=4$.
11) References Supplementary Material

Table S1 Indicator clades for $K=2$ groups. Specificity, fidelity and indicator statistic (stat) of internal nodes associated for the top nodes with the highest indicator statistic. Clades names are based on their taxonomic composition.

Cluster	Clades	Specificity	Fidelity	stat
Tropical	Gentianales	0.9419787	0.9885234	0.965
	Fabaceae, tribe Mimoseae	0.9339992	0.9680896	0.951
	Fabaceae, subfam. Caesalpinioideae	0.9366716	0.9588523	0.948
	Euphorbiaceae and Peraceae	0.9639994	0.9303009	0.947
	Putranjivaceae, Phyllanthaceae, Picrodendraceae and Ochnaceae	0.9792854	0.9143457	0.946
Extratropical	Fagales	0.886934	0.85745	0.872
	Fagales plus Cucurbitales	0.875902	0.85745	0.867
	Ulmaceae	0.987098	0.62106	0.783
	Sapindaceae, subfam. Hippocastanoideae	0.943887	0.612106	0.76

Cluster	Clades	Specificity	Fidelity	stat
Tropical Moist	Xylopia, Fusaea and Duguetia (Annonaceae)	0.849969	0.700198	0.771
	Couepia and Hirtella (Chrysobalanaceae)	0.757572	0.711399	0.734
	Burseraceae, tribes Protieae and Canarieae	0.794147	0.678014	0.734
	Ochnaceae	0.746723	0.706128	0.726
	Myristicaceae	0.851393	0.591917	0.71
	Calophyllaceae	0.7516	0.668351	0.709
Tropical Dry	Bignoniaceae, tribes Bignonieae and Tecomeae	0.778906	0.117489	0.303
	Lasiocarpus and Ptilochaeta (Malpighiaceae)	0.853331	0.072646	0.249
	Cactaceae, tribe Trichocereeae	0.864368	0.047982	0.204
Southern Extratropical	Prosopis, Piptadeniopsis (Fabaceae, tribe Mimoseae)	0.733744	0.402597	0.544
	Fabaceae, tribe Caesalpinieae	0.670481	0.301587	0.45
	Vallea and Aristotelia (Elaeocarpaceae)	0.854485	0.223665	0.437
	Cactaceae, tribes Pachycereeae and Notocactea	0.732889	0.248196	0.426
	Scrophulariaceae	0.597146	0.30303	0.425
Northern Extratropical	Sapindaceae, subfam. Hippocastanoideae	0.83986	0.69118	0.762
	Ulmaceae	0.75668	0.70459	0.73
	Oleaceae, tribe Oleeae	0.80497	0.62332	0.708
	Juglandaceae	0.76212	0.53677	0.64

Table S2 Indicator clades for $K=4$ groups. Specificity, fidelity and indicator statistic (stat) of

Table S3. Affiliation of principal vegetation formations in the tropics with the two main tropical groups from the $K=\mathbf{4}$ clustering analysis. Vegetation formations were taken from the NeoTropTree dataset, which categorises formations first based on physiognomy (savanna vs. forest) and then segregates the forests based on phenology. Following (47) and (66), we consider deciduous tropical forests to represent the tropical dry forest biome, while semideciduous forests are more related floristically to the tropical moist forest biome. Semideciduous forests share many tree species with evergreen forests and relatively few with more fully deciduous forests $(47,66)$. We further divided the savannas based on geography, as our analyses showed evident differences in group affiliation between savannas in the Cerrado Domain of Brazil versus those further north (i.e. Llanos of Venezuela and Colombia and those in Central America).

	Tropical dry	Tropical moist
Evergreen Forests	$15 \%(501)$	$85 \%(2948)$
Semideciduous Forests	$10 \%(167)$	$90 \%(1530)$
Deciduous Forests	$75 \%(868)$	$25 \%(285)$
Southern Savannas (Cerrado)	$8 \%(56)$	$92 \%(657)$
Northern Savannas	$54 \%(65)$	$46 \%(56)$

Table S4. Stem ages for genera nodes used to callibrate the phylogenetic tree, and the reference of their source.

Genus	stem age (Myr)	Reference
1 Acer	60	Renner et al 2008, Systematic Biology
2 Acioa	19.1	Bardon et al 2016, American Journal of Botany
3 Aesculus	65	Harris et al 2009, Taxon
4 Anaxagorea	90.44	Baker et al. 2014, Ecology Letters (and references herein)
5 Andira	17.51	Baker et al. 2014, Ecology Letters (and references herein)
6 Antiaris	34	Gardner et al 2017, Molecular Phylogenetics and Evolution
7 Aphananthe	71.5	Yang et al 2007, PLOS ONE
8 Aphanocalyx	46	Bruneau et al 2008, Botany
9 Artocarpus	51	Rockinger et al 2017, BMC Evolutionary Biology
10 Atuna	20.5	Bardon et al 2016, American Journal of Botany
11 Avicennia	70.09	Tripp \& McDade 2014, Systematic Biology
12 Bagassa	67	Gardner et al 2017, Molecular Phylogenetics and Evolution
13 Bocageopsis	5.98	Baker et al. 2014, Ecology Letters (and references herein)
14 Brosimum	48	Baker et al. 2014, Ecology Letters (and references herein)
15 Caesalpinia	48.3	Bruneau et al 2008, Botany
16 Carapa	29.5	Baker et al. 2014, Ecology Letters (and references herein)
17 Cassia	45	Bruneau et al 2008, Botany
18 Castilla	22	Baker et al. 2014, Ecology Letters (and references herein)
19 Cecropia	44	Baker et al. 2014, Ecology Letters (and references herein)
20 Cedrela ///toona	48.4	Muellner et al 2010, American Journal of Botany
21 Cedrelopsis	18.94	Appelhans et al 2012, Journal of Biogeography
22 Centroplacus	69	Cai et al 2016, PlosONE
23 Cercis	47.3	Bruneau et al 2008, Botany
24 Chrysobalanus	24.2	Bardon et al 2016, American Journal of Botany
25 Cissus	67.99	Rodrigues et al 2014, Taxon
26 Clarisia	70	Gardner et al 2017, Molecular Phylogenetics and Evolution
27 Coceveiba	72	Baker et al. 2014, Ecology Letters (and references herein)
28 Cornus	74.03	Xiang et al 2011, Molecular Phylogenetics and Evolution
29 Couepia	21.6	Bardon et al 2016, American Journal of Botany
30 Crudia	45	Bruneau et al 2008, Botany
31 Cylicomorpha	35.5	Antunes \& Renner 2012, Molecular Phylogenetics and Evolution
32 Cynometra	12.93	Baker et al. 2014, Ecology Letters (and references herein)
33 Dacryodes	38	Baker et al. 2014, Ecology Letters (and references herein)
34 Dactyladenia	15.9	Bardon et al 2016, American Journal of Botany
35 Dactylocladus	39	Moyle 2004, Evolution
36 Dialium	10.9	Baker et al. 2014, Ecology Letters (and references herein)
37 Dicymbe	12	Baker et al. 2014, Ecology Letters (and references herein)
38 Diplotropis	20.27	Baker et al. 2014, Ecology Letters (and references herein)
39 Dipterix	26.44	Baker et al. 2014, Ecology Letters (and references herein)
40 Dipterocarpus	47.7	Heckenhauer et al 2017, Botanical Journal of the Linnean Society
41 Drimys	56.76	Thomas et al 2014, Journal of Biogeography
42 Dryobalanops	43.3	Heckenhauer et al 2017, Botanical Journal of the Linnean Society
43 Duguetia	30.64	Baker et al. 2014, Ecology Letters (and references herein)
44 Dycorynia	10.9	Baker et al. 2014, Ecology Letters (and references herein)
45 Embothrium	39.3	Sauquet et al 2009, PNAS
46 Eperua	12.32	Baker et al. 2014, Ecology Letters (and references herein)
47 Ficus	58	Gardner et al 2017, Molecular Phylogenetics and Evolution
48 Froesia	39.4	Schneider \& Zizka 2017, Taxon
49 Fusaea	30.64	Baker et al. 2014, Ecology Letters (and references herein)
50 Glochidion	31.51	van Welzen et al 2015, Journal of Biogeography
51 Glycosmis	32.54	Appelhans et al 2012, Journal of Biogeography
52 Guarea	14.8	Baker et al. 2014, Ecology Letters (and references herein)
53 Guatteria	55.83	Baker et al. 2014, Ecology Letters (and references herein)
54 Gyrocarpus	72	Michalak et al 2010. Journal of Biogeography
55 Hakea	12.8	Mast et al 2012, American Journal of Botany

Genus	stem age (Myr)	Reference
56 Harrisoinia	57.99	Appelhans et al 2012, Journal of Biogeography
57 Helicostylis	28	Baker et al. 2014, Ecology Letters (and references herein)
58 Hennecartia	15.58	Renner et al 2010, Journal of Biogeography
59 Hernandia	76	Michalak et al 2010. Journal of Biogeography
60 Hevea	85	Baker et al. 2014, Ecology Letters (and references herein)
61 Hopea	21.6	Heckenhauer et al 2017, Botanical Journal of the Linnean Society
62 Hymenaea	24	Bruneau et al 2008, Botany
63 Inga	10	Baker et al. 2014, Ecology Letters (and references herein)
64 Ipomoea	34.97	Eserman et al 2014, American Journal of Botany
65 Iryanthera	19	Baker et al. 2014, Ecology Letters (and references herein)
66 Jacaratia	27.5	Antunes \& Renner 2012, Molecular Phylogenetics and Evolution
67 Lacunaria	20.3	Schneider \& Zizka 2017, Taxon
68 Lomatia	70.8	Milner et al 2015, Journal of Biogeography
69 Lonchocarpus	15.07	Baker et al. 2014, Ecology Letters (and references herein)
70 Lonicera	43.37	Bell \& Donoghue 2005, American Journal of Botany
71 Maclura	85	Gardner et al 2017, Molecular Phylogenetics and Evolution
72 Macrolobium	32	Baker et al. 2014, Ecology Letters (and references herein)
73 Magnistipula	19	Bardon et al 2016, American Journal of Botany
74 Malmea	19.99	Baker et al. 2014, Ecology Letters (and references herein)
75 Manilkara	32	Armstrong et al 2014, Frontiers in Genetics
76 Maranthes	20.5	Bardon et al 2016, American Journal of Botany
77 Meliosma	67.34	Yang et al 2018, Molecular Phylogenetics and Evolution
78 Mimusops	35	Armstrong et al 2014, Frontiers in Genetics
79 Mouriri	90	Renner 2004, American Journal of Botany
80 Myrtae tribe	58.96	Vasconcelos et al 2017, Molecular Phylogentics and Evolution
81 Neocarya	25.6	Bardon et al 2016, American Journal of Botany
82 Ormosia	40.62	Baker et al. 2014, Ecology Letters (and references herein)
83 Otoba	17	Baker et al. 2014, Ecology Letters (and references herein)
84 Parashora	22.9	Heckenhauer et al 2017, Botanical Journal of the Linnean Society
85 Parkia	45.5	Baker et al. 2014, Ecology Letters (and references herein)
86 Peltogyne	28.8	Baker et al. 2014, Ecology Letters (and references herein)
87 Persea	55.3	Li et al 2018, American Journal of Botany
88 Peumus	55.66	Renner et al 2010, Journal of Biogeography
89 Poecilanthe	40.99	Baker et al. 2014, Ecology Letters (and references herein)
90 Poulsenia	22	Baker et al. 2014, Ecology Letters (and references herein)
91 Pourouma	44	Baker et al. 2014, Ecology Letters (and references herein)
92 Pradosia	47.5	Terra-Araujo et al 2015, Molecular Phylogenetics and Evolution
93 Prosopis SA	28.96	Catalano et al 2008, Botanical Journal of the Linnean Society
94 Protium	52.5	Baker et al. 2014, Ecology Letters (and references herein)
95 Prunus	60.7	Chin et al 2014, Molecular Phylogentics and Evolution
96 Pseudolmedia	36	Baker et al. 2014, Ecology Letters (and references herein)
97 Pseudowintera	45.18	Thomas et al 2014, Journal of Biogeography
98 Pseudoxandra	15.09	Baker et al. 2014, Ecology Letters (and references herein)
99 Pterocarpus	16.66	Baker et al. 2014, Ecology Letters (and references herein)
100 Quiina	29	Schneider \& Zizka 2017, Taxon
101 Rhododendron	58	Schwery et al 2015, New Phytologist
102 Richea	22.31	Schwery et al 2015, New Phytologist
103 Sambucus	45.49	Bell \& Donoghue 2005, American Journal of Botany
104 Sideroxylon	74	Smedmark \& Anderberg 2007, American Journal of Botany
105 Slonaea	79	Crayn et al 2006. American Journal of Botany
106 Sorocea	59	Baker et al. 2014, Ecology Letters (and references herein)
107 Spathelia	19.21	Appelhans et al 2012, Journal of Biogeography
108 Swartzia	45.96	Baker et al. 2014, Ecology Letters (and references herein)
109 Tachigali	4.65	Baker et al. 2014, Ecology Letters (and references herein)
110 Tasmania	69.98	Thomas et al 2014, Journal of Biogeography
111 Tepualia	24.9	Thornhill et al 2015, Molecular Phylogentics and Evolution
112 Theobroma	11.6	Richardson et al 2015, Front. Ecol. Evol.
113 Unonopsis	7.94	Baker et al. 2014, Ecology Letters (and references herein)
114 Urophyllum	27.1	Smedmark et al 2010, Journal of Biogeography
115 Vallea	48	Crayn et al 2006. American Journal of Botany
116 Vateria	15.4	Heckenhauer et al 2017, Botanical Journal of the Linnean Society
117 Vatica	18.3	Heckenhauer et al 2017, Botanical Journal of the Linnean Society
118 Viburum	71.18	Bell \& Donoghue 2005, American Journal of Botany
119 Virola	17	Baker et al. 2014, Ecology Letters (and references herein)
120 Vitellariopsis	26	Armstrong et al 2014, Frontiers in Genetics
121 Vouacapoua	48.69	Baker et al. 2014, Ecology Letters (and references herein)
122 Xylopia	49.98	Baker et al. 2014, Ecology Letters (and references herein)
123 Zygia	17.82	Baker et al. 2014, Ecology Letters (and references herein)

Fig. S1. Match between tropics vs. extratropics groups from $K=2$ clustering and eight delimitations of the tropics following Feeley \& Stroud [2018]: C1) all areas that occur between $23.4^{\circ} \mathrm{S}$ and $23.4^{\circ} \mathrm{N}$; C2) all areas with a net positive energy balance; C3) all areas where mean annual temperature does not vary with latitude; C4) all areas where temperatures do not go below freezing in a typical year; C5) all areas where the mean monthly temperature is never less than $18^{\circ} \mathrm{C}$; C6) all areas where the mean annual "biotemperature" $\geq 24^{\circ} \mathrm{C}$; C7) all areas where the annual range of temperature is less than the average daily temperature range; C8) all areas where precipitation seasonality exceeds temperature seasonality.

Match $K=2$ and Feeley \& Stroud (2018)'s criteria for Tropics

Fig. S2. Selection of number of clusters. A) Elbow criterion, explained variance from clustering as a function of number of groups; B) Silhouette criterion, average silhouette width for each site as a function of number of groups.

Fig. S3 Shared versus unique Phylogenetic Diversity for $K=2$ and $K=3$ clustering analyses. Euler Diagrams showing the amount of unique phylogenetic diversity in each cluster and the phylogenetic diversity shared between clusters (in millions of years). A) $K=2$ clustering and B) $K=3$ clustering.

Fig. S4. Clustering $K=2$. A) Location of the 9937 angiosperm tree assemblages [blue dots ($\mathrm{n}=2792$) representing the extratropical group and black dots ($\mathrm{n}=7145$) the tropical group]; B) Ordination of tree assemblages based on evolutionary lineage composition; C) Maximum Climatological Water Deficit (CWD) versus minimum temperature of the coldest month. Lines represent the 95th quantile of the density of points for each group. In each panel, symbol type indicates major vegetation type (see panel C).

Fig. S5. Clustering $\boldsymbol{K}=\mathbf{3}$. A) Location of the 9937 angiosperm tree assemblages in three evolutionary groups; B) Ordination of tree assemblages based on evolutionary lineage composition; C) Maximum Climatological Water Deficit (CWD) versus minimum temperature of the coldest month. Lines represent the 95th quantile of the density of points for each group. In each panel, symbol type indicates major vegetation type.

Fig. S6. Clustering $K=4$. A) Location of the 9937 angiosperm tree assemblages in four evolutionary groups; B) Ordination of tree assemblages based on evolutionary lineage composition; C) Maximum Climatological Water Deficit (CWD) versus minimum temperature of the coldest month. Lines represent the 95th quantile of the density of points for each group. In each panel, symbol type indicates major vegetation type.

References Supplementary Material

44) Oliveira-Filho, A. T. (2017). NeoTropTree, Flora arbórea da Região Neotropical: Um banco de dados envolvendo biogeografia, diversidade e conservação. Retrieved from http:// www.neotroptree.info/
45) Burrill, E., Wilson, A., Turner, J., Pugh, S., Menlove, J., Christiansen, G., Conkling, B., \& David, W. (2018). The Forest Inventory and Analysis Database: Database Description and User Guide Version 8.0 for Phase 2. U.S. Available at web address:
www.fia.fs.fed.us/library/database-documentation: Department of Agriculture, Forest Service.
46) Maitner, B.S., Boyle, B., Casler, N., Condit, R., Donoghue, J., Durán, S.M., Guaderrama, D., Hinchliff, C.E., Jørgensen, P.M., Kraft, N.J. \& McGill, B. (2018). The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution, 9(2), 373-379.
47) Silva de Miranda, P.L., Pennington, R.T., Neves, D.M., Baker, T.R. \& Dexter, K.G. (2018). Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Global Ecology and Biogeography, 27, 899-912.
48) Baraloto, C., Hardy, O.J., Paine, C.T., Dexter, K.G., Cruaud, C., Dunning, L.T., Gonzalez, M.A., Molino, J.F., Sabatier, D., Savolainen, V. \& Chave, J. (2012). Using functional traits and phylogenetic trees to examine the assembly of tropical tree communities. Journal of Ecology, 100(3), 690-701.
49) Dexter, K., \& Chave, J. (2016). Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees. PeerJ, 4, e2402.
50) Katoh, K., \& Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution, 30(4), 772-780.
51) Stamatakis, A., Hoover, P., \& Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758-771.
52) Gastauer, M., Neto, M., \& Alves, J. A. (2017). Updated angiosperm family tree for analyzing phylogenetic diversity and community structure. Acta Botanica Brasilica, 31(2), 191-198.
53) Smith, S. A., \& O’Meara, B. C. (2012). treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics, 28(20), 2689-2690.
54) Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L., \& Hernández-Hernández, T. (2015). A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist, 207(2), 437-453.
55) Bryant, J. A., Lamanna, C., Morlon, H., Kerkhoff, A. J., Enquist, B. J., \& Green, J. L. (2008). Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proceedings of the National Academy of Sciences USA, 105(Supplement 1), 1150511511.
56) Tsirogiannis, C., \& Sandel, B. (2016). PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography, 39(7), 709714.
57) Maechler, M. (2019). Finding Groups in Data": Cluster Analysis Extended Rousseeuw et. R Packag. Version 2.0, 6.
58) Pavoine, S. (2016). A guide through a family of phylogenetic dissimilarity measures among sites. Oikos, 125(12), 1719-1732.
59) Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., \& Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25(15), 1965-1978.
60) Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C. and Henry, M. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190.
61) Duong, Tarn. 2018. Ks: Kernel Smoothing. https://CRAN.R-project.org/package=ks.
62) De Cáceres, M., \& Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology, 90(12), 3566-3574.
63) De Cáceres, M. \& Jansen, F. (2016). Package 'indicspecies'. Relationship between species and groups of sites. R package version, 1(6).
64) Larsson J (2019). eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R package version 5.1.0, https://cran.r-project.org/package=eulerr.
65) Dusa, A. (2018). venn: Draw Venn Diagrams. R package version 5.1.0. https://cran.rproject.org/web/packages/venn/index.html.
66) Bueno, M. L., Dexter, K. G., Pennington, R. T., Pontara, V., Neves, D. M., Ratter, J. A., \& de Oliveira-Filho, A. T. (2018). The environmental triangle of the Cerrado Domain: Ecological factors driving shifts in tree species composition between forests and savannas. Journal of Ecology, 106(5), 2109-2120.
67)Armstrong, K.E., Stone, G.N., Nicholls, J.A., Valderrama, E., Anderberg, A.A., Smedmark, J., Gautier, L., Naciri, Y., Milne, R. and Richardson, J.E. (2014). Patterns of diversification amongst tropical regions compared: a case study in Sapotaceae. Frontiers in genetics, 5, 362.
67) Antunes, F.C. \& Renner, S.S. (2012). A dated phylogeny of the papaya family (Caricaceae) reveals the crop's closest relatives and the family's biogeographic history. Molecular Phylogenetics and Evolution, 65(1), 46 - 53.
68) Appelhans, M. S., Keßler, P. J., Smets, E., Razafimandimbison, S. G., \& Janssens, S. B. (2012). Age and historical biogeography of the pantropically distributed Spathelioideae (Rutaceae, Sapindales). Journal of Biogeography, 39(7), 1235-1250.
69) Baker, T.R., Pennington, R.T., Magallon, S., Gloor, E., Laurance, W.F., Alexiades, M., Alvarez, E., Araujo, A., Arets, E.J., Aymard, G. and De Oliveira, A.A. (2014). Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 17(5), 527-536.
70) Bell, C. D., \& Donoghue, M. J. (2005). Dating the Dipsacales: comparing models, genes, and evolutionary implications. American Journal of Botany, 92(2), 284-296.
71) Bardon, L., Sothers, C., Prance, G.T., Malé, P.J.G., Xi, Z., Davis, C.C., Murienne, J., García-Villacorta, R., Coissac, E., Lavergne, S. \& Chave, J. (2016). Unraveling the biogeographical history of Chrysobalanaceae from plastid genomes. American journal of botany, 103(6), 1089-1102.
72) Bruneau, A., Mercure, M., Lewis, G. P., \& Herendeen, P. S. (2008). Phylogenetic patterns and diversification in the caesalpinioid legumes. Botany, 86(7), 697-718.
73) Cai, L., Xi, Z., Peterson, K., Rushworth, C., Beaulieu, J., \& Davis, C. C. (2016). Phylogeny of Elatinaceae and the tropical Gondwanan origin of the Centroplacaceae (Malpighiaceae, Elatinaceae) Clade. PloS one, 11(9), e0161881.
74) Catalano, S. A., Vilardi, J. C., Tosto, D., \& Saidman, B. O. (2008). Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae). Biological Journal of the Linnean Society, 93(3), 621-640.
75) Chin, S. W., Shaw, J., Haberle, R., Wen, J., \& Potter, D. (2014). Diversification of almonds, peaches, plums and cherries-molecular systematics and biogeographic history of Prunus (Rosaceae). Molecular phylogenetics and evolution, 76, 34-48.
76) Crayn, D. M., Rossetto, M., \& Maynard, D. J. (2006). Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremandraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia. American Journal of Botany, 93(9), 1328-1342.
77) Eserman, L. A., Tiley, G. P., Jarret, R. L., Leebens-Mack, J. H., \& Miller, R. E. (2014). Phylogenetics and diversification of morning glories (tribe Ipomoeeae, Convolvulaceae) based on whole plastome sequences. American Journal of Botany, 101(1), 92-103. 79) Gardner, E. M., Sarraf, P., Williams, E. W., \& Zerega, N. J. (2017). Phylogeny and biogeography of Maclura (Moraceae) and the origin of an anachronistic fruit. Molecular phylogenetics and evolution, 117, 49-59.
78) Harris, A. J., Xiang, Q. Y., \& Thomas, D. T. (2009). Phylogeny, origin, and biogeographic history of Aesculus L.(Sapindales)-an update from combined analysis of DNA sequences, morphology, and fossils. Taxon, 58(1), 108-126.
79) Heckenhauer, J., Samuel, R., Ashton, P.S., Turner, B., Barfuss, M.H., Jang, T.S., Temsch, E.M., Mccann, J., Salim, K.A., Attanayake, A.M. and Chase, M.W. (2017). Phylogenetic analyses of plastid DNA suggest a different interpretation of morphological evolution than those used as the basis for previous classifications of Dipterocarpaceae (Malvales). Botanical Journal of the Linnean Society, 185(1), 1-26.
80) Li, L., Li, J., Rohwer, J. G., van der Werff, H., Wang, Z. H., \& Li, H. W. (2011). Molecular phylogenetic analysis of the Persea group (Lauraceae) and its biogeographic implications on the evolution of tropical and subtropical Amphi-Pacific disjunctions. American journal of botany, 98(9), 1520-1536.
81) Mast, A. R., Milton, E. F., Jones, E. H., Barker, R. M., Barker, W. R., \& Weston, P. H. (2012). Time-calibrated phylogeny of the woody Australian genus Hakea (Proteaceae) supports multiple origins of insect-pollination among bird-pollinated ancestors. American Journal of Botany, 99(3), 472-487.
82) Michalak, I., Zhang, L. B., \& Renner, S. S. (2010). Trans-Atlantic, trans-Pacific and trans-Indian Ocean dispersal in the small Gondwanan Laurales family Hernandiaceae. Journal of Biogeography, 37(7), 1214-1226.
83) Milner, M. L., Weston, P. H., Rossetto, M., \& Crisp, M. D. (2015). Biogeography of the Gondwanan genus Lomatia (Proteaceae): vicariance at continental and intercontinental scales. Journal of biogeography, 42(12), 2440-2451.
84) Moyle, L. C., Olson, M. S., \& Tiffin, P. (2004). Patterns of reproductive isolation in three angiosperm genera. Evolution, 58(6), 1195-1208.
85) Muellner, A. N., Pennington, T. D., Koecke, A. V., \& Renner, S. S. (2010).

Biogeography of Cedrela (Meliaceae, Sapindales) in central and South america. American Journal of Botany, 97(3), 511-518.
88) Renner, S. S., Zhang, L. B., \& Murata, J. (2004). A chloroplast phylogeny of Arisaema (Araceae) illustrates Tertiary floristic links between Asia, North America, and East Africa. American Journal of Botany, 91(6), 881-888.
89) Renner, S. S., Grimm, G. W., Schneeweiss, G. M., Stuessy, T. F., \& Ricklefs, R. E. (2008). Rooting and dating maples (Acer) with an uncorrelated-rates molecular clock: implications for North American/Asian disjunctions. Systematic biology, 57(5), 795-808. 90) Renner, S. S., Strijk, J. S., Strasberg, D., \& Thébaud, C. (2010). Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long-distance dispersal, but not West Gondwana. Journal of Biogeography, 37(7), 1227-1238.
91) Rockinger, A., Flores, A. S., \& Renner, S. S. (2017). Clock-dated phylogeny for 48% of the 700 species of Crotalaria (Fabaceae-Papilionoideae) resolves sections worldwide and implies conserved flower and leaf traits throughout its pantropical range. BMC evolutionary biology, 17(1), 61.
92) Rodrigues, J. G., Lombardi, J. A., \& Lovato, M. B. (2014). Phylogeny of Cissus (Vitaceae) focusing on South American species. Taxon, 63(2), 287-298.
93) Sauquet, H., Weston, P. H., Anderson, C. L., Barker, N. P., Cantrill, D. J., Mast, A. R., \& Savolainen, V. (2009). Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proceedings of the National Academy of Sciences, 106(1), 221-225.
94) Schneider, J. V., \& Zizka, G. (2017). Phylogeny, taxonomy and biogeography of Neotropical Quiinoideae (Ochnaceae sl). Taxon, 66(4), 855-867.
95) Schwery, O., Onstein, R. E., Bouchenak-Khelladi, Y., Xing, Y., Carter, R. J., \& Linder, H. P. (2015). As old as the mountains: the radiations of the Ericaceae. New Phytologist, 207(2), 355-367.
96) Smedmark, J. E., \& Anderberg, A. A. (2007). Boreotropical migration explains hybridization between geographically distant lineages in the pantropical clade Sideroxyleae (Sapotaceae). American Journal of Botany, 94(9), 1491-1505.
97) Smedmark, J. E., Eriksson, T., \& Bremer, B. (2010). Divergence time uncertainty and historical biogeography reconstruction-an example from Urophylleae (Rubiaceae). Journal of Biogeography, 37(12), 2260-2274.
98) Terra-Araujo, M. H., de Faria, A. D., Vicentini, A., Nylinder, S., \& Swenson, U. (2015). Species tree phylogeny and biogeography of the Neotropical genus Pradosia (Sapotaceae, Chrysophylloideae). Molecular phylogenetics and evolution, 87, 1-13.
99) Thornhill, A. H., Ho, S. Y., Külheim, C., \& Crisp, M. D. (2015). Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution, 93, 29-43.
100) Thomas, N., Bruhl, J. J., Ford, A., \& Weston, P. H. (2014). Molecular dating of Winteraceae reveals a complex biogeographical history involving both ancient Gondwanan vicariance and long-distance dispersal. Journal of Biogeography, 41(5), 894-904.
101) Tripp, E. A., \& McDade, L. A. (2014). A rich fossil record yields calibrated phylogeny for Acanthaceae (Lamiales) and evidence for marked biases in timing and directionality of intercontinental disjunctions. Systematic Biology, 63(5), 660-684.
102) van Welzen, P. C., Pruesapan, K., Telford, I. R., \& Bruhl, J. J. (2015). Historical biogeography of Breynia (Phyllanthaceae): what caused speciation?. Journal of Biogeography, 42(8), 1493-1502.
103) Vasconcelos, T.N., Proença, C.E., Ahmad, B., Aguilar, D.S., Aguilar, R., Amorim, B.S., Campbell, K., Costa, I.R., De-Carvalho, P.S., Faria, J.E. \& Giaretta, A. (2017). Myrteae
phylogeny, calibration, biogeography and diversification patterns: increased understanding in the most species rich tribe of Myrtaceae. Molecular phylogenetics and evolution, 109, 113137.
104) Xiang, Q. Y. J., Thomas, D. T., \& Xiang, Q. P. (2011). Resolving and dating the phylogeny of Cornales-effects of taxon sampling, data partitions, and fossil calibrations. Molecular Phylogenetics and Evolution, 59(1), 123-138.
105) Yang, M. Q., Li, D. Z., Wen, J., \& Yi, T. S. (2017). Phylogeny and biogeography of the amphi-Pacific genus Aphananthe. PloS one, 12(2), e0171405.
106) Yang, T., Lu, L. M., Wang, W., Li, J. H., Manchester, S. R., Wen, J., \& Chen, Z. D. (2018). Boreotropical range expansion and long-distance dispersal explain two amphi-Pacific tropical disjunctions in Sabiaceae. Molecular phylogenetics and evolution, 124, 181-191.

