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Abstract

The phylogenetic branching order of the green algal groups that gave rise to land plants remains uncertain despite its
fundamental importance to understanding plant evolution. Previous studies have demonstrated that land plants evolved
from streptophyte algae, but different lineages of streptophytes have been suggested to be the sister group of land plants.
To better understand the evolutionary history of land plants and to determine the potential effects of “long-branch
attraction” in phylogenetic reconstruction, we analyzed a chloroplast genome data set including three new chloroplast
genomes from streptophyte algae: Coleochaetae orbicularis (Coleochaetales), Nitella hookeri (Charales), and Spirogyra
communis (Zygnematales). We further applied a site pattern sorting method together with site- and time-heterogeneous
models to investigate the branching order among streptophytes and land plants. Our chloroplast phylogenomic analyses
support previous hypotheses based on nuclear data in placing Zygnematales alone, or a clade consisting of Coleochaetales
plus Zygnematales, as the closest living relatives of land plants.
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The relationship between green algae and land plants remains
uncertain despite its importance to understanding plant evo-
lution. Analyses of both morphological and molecular data
have established land plants as a monophyletic group that
evolved within streptophyte algae (also known as the char-
ophycean algae). To better understand the colonization of
the terrestrial habitat and the evolution of organismal com-
plexity, it is critical to establish which streptophyte groups are
most closely related to land plants.

An early study based on four genes from three genomic
compartments indicated that Charales were sister to land
plants (Karol et al. 2001). In contrast, recent phylogenomic
analyses of both chloroplast and nuclear genome data indi-
cated that 1) Coleochaetales alone (Turmel, Gagnon et al.
2009, Turmel, Otis et al. 2009), 2) Zygnematales alone
(Turmel et al. 2006; Chang and Graham 2011; Wodniok
et al. 2011; Timme et al. 2012; Zhong et al. 2013), or 3)
Coleochaetales and Zygnematales combined (Finet et al.
2012; Laurin-Lemay et al. 2012) are sister to land plants.
Based on their cytological characteristics, Charales (such
as Chara and Nitella) are large but coenocytic algae with
thousands of nuclei per cell (Grant and Borowitzka 1984).
In contrast, Coleochaetales (such as Coleochaete and
Chaetosphaeridium) and Zygnematales (such as Zygnema
and Spirogyra) are noncoenocytic organisms that are divided

into much smaller cells, each with a single nucleus. In this
cytological sense, Coleochaetales or Zygnematales may
represent more appropriate sisters to land plants.

Chloroplast genomic data have been proven very useful for
helping resolve plant phylogeny (e.g., Jansen et al. 2007; Moore
et al. 2007; Zhong et al. 2010; Parks et al. 2012; Wu et al. 2013).
In terms of sequenced chloroplast genomes of streptophyte
algae, however, there is only one genome currently available
for each of the Charales (Chara vulgaris) and Coleochaetales
(Chaetosphaeridium globosum). The paucity of taxon sam-
pling within the most deeply diverged regions of the green
plant phylogeny is especially problematic and may lead to
long-branch attraction (LBA) artifacts (Hendy and Penny
1989). To ameliorate the problem of LBA, we sequenced
three chloroplast genomes from streptophyte algae using
next-generation sequencing technology: Coleochaetae orbicu-
laris (Coleochaetales), Nitella hookeri (Charales), and
Spirogyra communis (Zygnematales). We then analyzed
these data simultaneously in a larger chloroplast genome
data set, which includes 72 protein-coding genes (45,879
aligned nucleotide sites) common to 30 land plants and
streptophyte algae.

It has been demonstrated that fast-evolving sites repre-
sent a challenge for phylogenetic inference because they
are likely to experience multiple changes that tend to
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mask informative phylogenetic signals (Delsuc et al. 2005).
Recent studies reported that the accuracy of chloroplast
phylogenomic analyses could be improved by either remov-
ing the most rapidly evolving sites (which is more likely
to contain misleading phylogenetic information) or by
using site-heterogeneous models (Zhong et al. 2010, 2011;
Goremykin et al. 2013). As reported in Zhong et al. (2011)
and Goremykin et al. (2013), the “observed variability” (OV)-
sorting method (Goremykin et al. 2010) identifies not only
the most rapidly evolving sites within a data set but also
those sites that have a poor fit to model assumptions. We
implemented this method to sort the 45,879 sites in our
concatenated matrix from most variable to least variable.
We then successively removed the most variable sites in
increments of 500. The optimal break point for site removal
was determined at site 36,879 (i.e., 9,000 sites were removed
from the full matrix), where we identified significant
improvement in the two Pearson correlations (see fig. 1).

For the fully concatenated (45,879 aligned sites) and
reduced OV-sorted (36,879 aligned sites) matrices, we first
used the site-homogeneous GTRGAMMA model with the
a posteriori partitioning strategy (Xi et al. 2012) to infer our
maximum likelihood (ML) phylogeny. The a posteriori parti-
tioning strategy partitions data based on the Bayesian
searches of the matrix using a mixture model (Pagel and
Meade 2004), which has recently been shown to produce
better ML trees than the commonly used a priori approaches
(e.g., partitioning by gene or by codon position; Xi et al. 2012).
Here, our ML analyses strongly support the monophyly of
land plants (100 bootstrap percentage [BP]) and strongly
place Zygnematales as sister to land plants (97 BP and 96

BP for the fully concatenated and reduced OV-sorted matri-
ces, respectively; fig. 2A).

Site-homogeneous models are preferred when a single
Markov process of substitution can be applied for all sites
and at all times, yet many biological sequences cannot be
adequately described using a single replacement matrix. In
contrast, site-heterogeneous models introduce different cat-
egories by regrouping sites with similar profiles of stationary
frequencies and are thus more effective at minimizing LBA
artifacts (Lartillot and Philippe 2008; Philippe et al. 2011; Kayal
et al. 2013). Therefore, we applied two site-heterogeneous
mixture models (Lartillot and Philippe 2004; Pagel and
Meade 2004) to infer phylogenetic relationships in a
Bayesian framework. Similar to our ML phylogeny using the
homogeneous model, both site-heterogeneous models sup-
port the relationship (Coleochaetales, [Zygnematales, land
plants]) using the fully concatenated matrix with 1.0 posterior
probability (PP) (fig. 3A and supplementary table S1,
Supplementary Material online). However, a slightly different
relationship ([Zygnematales, Coleochaetales], land plants)
was also strongly supported using this OV-sorted matrix
(0.96 PP; fig. 3B).

Most current phylogenetic methods (e.g., homogeneous
and site-heterogeneous models) assume that base composi-
tion is stationary over time. Violation of this model assump-
tion, however, may lead to inaccurate tree reconstruction.
Compositional heterogeneity is well known to violate the
assumptions of substitution models (Lockhart et al. 1994;
Foster 2004; Jermiin et al. 2004). Jobson and Qiu (2011) sug-
gest that compositional shifts of plastid proteins, which could
lead to such compositional heterogeneity, might allow

FIG. 1. Pearson correlation results. The line with circles indicates Pearson correlation coefficients (r) of ML distances calculated from partitions A (more
conserved) and B (less conserved). The line with triangles indicates r values of uncorrected P-distances and ML distances for B partitions. The r values
begin to increase dramatically at 36,879 sites remaining.
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streptophyte algae to better deal with environmental stresses
on land. To evaluate whether stationarity of composition was
violated, we performed posterior predictive tests (Lartillot
et al. 2009) for the fully concatenated and reduced OV-
sorted matrices. This statistical test indicated that the
model assumption of compositional homogeneity is signifi-
cantly violated in both these matrices (Z-scores are 5.98 and

5.38, respectively; see table 1). Thus, compositional heteroge-
neity could potentially influence our phylogenetic inference
on the origin of land plants. To examine the effect of com-
positional heterogeneity, we implemented two nonhomoge-
neous nonstationary (time-heterogeneous) models of DNA
sequence evolution in our ML and Bayesian analyses (Galtier
and Gouy 1998; Blanquart and Lartillot 2008). When taking
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FIG. 2. ML trees using the homogeneous model (GTRGAMMA) with the a posteriori partitioning strategy based on the full (45,879 aligned sites) and
reduced OV-sorted (36,879 aligned sites) matrices. Numbers on the tree indicate BP, and nodes with 100 BP are not marked.
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FIG. 3. Phylogenetic trees using the site-heterogeneous model (i.e., the CAT-GTR model) in PhyloBayes and time-heterogeneous model in nhPhyML
based on the full (45,879 aligned sites) and OV-sorted (36,879 aligned sites) matrices. Numbers on the tree indicate the Bayesian PP from PhyloBayes and
the ML BP from nhPhyML, and nodes with 100 BP or 1.0 PP are not marked.

Table 1. Phylogenetic Analyses Using Bayesian (PhyloBayes) and ML (RAxML and nhPhyML) Estimations.

Data Sets PhyloBayes PP Z-Score P Value RAxML BP nhPhyML BP

45,879 (full data) (CO, [Z, L]) 1.00 5.98 0.000 (CO, [Z, L]) 99 (CO, [Z, L]) 100

38,379 (CO, [Z, L]) 0.82 5.33 0.003 (CO, [Z, L]) 98 (CO, [Z, L]) 96

37,879 ([Z, CO], L) 0.78 5.70 0.000 (CO, [Z, L]) 73 (CO, [Z, L]) 93

37,379 ([Z, CO], L) 0.91 4.20 0.007 (CO, [Z, L]) 94 (CO, [Z, L]) 84

36,879 (OV-sorted data) ([Z, CO], L) 0.96 5.38 0.000 (CO, [Z, L]) 96 (CO, [Z, L]) 81

36,379 ([Z, CO], L) 0.90 5.28 0.007 ([Z, CO], L) 100 (CO, [Z, L]) 84

35,879 ([Z, CO], L) 0.98 5.15 0.003 (CO, [Z, L]) 94 (CO, [Z, L]) 74

35,379 ([Z, CO], L) 0.99 4.45 0.013 ([Z, CO], L) 52 (CO, [Z, L]) 60

34,879 ([Z, CO], L) 1.00 5.85 0.000 ([Z, CO], L) 99 ([Z, CO], L) 54

34,379 ([Z, CO], L) 0.99 5.30 0.000 ([Z, CO], L) 100 (CO, [Z, L]) 62

33,879 ([Z, CO], L) 1.00 6.81 0.000 ([Z, CO], L) 100 (CO, [Z, L]) 53

33,379 ([Z, CO], L) 1.00 6.39 0.000 ([Z, CO], L) 100 (CO, [Z, L]) 42

32,879 ([Z, CO], L) 0.96 5.76 0.000 ([Z, CO], L) 94 ([Z, CO], L) 55

NOTE.—CO, Coleochaetales; L, land plants; Z, Zygnematales; PP, Bayesian posterior probability; BP, maximum likelihood bootstrap percentage. The PP and BP values supporting
Zygnematales closest to land plants are shown for (CO, [Z, L]) phylogeny, and both values supporting monophyletic relationship of Coleochaetales and Zygnematales are shown
for ([Z, CO], L) phylogeny.
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into account the compositional heterogeneity using
time-heterogeneous models, our results for both the full
and OV-sorted matrices consistently supported the relation-
ship (Coleochaetales, [Zygnematales, land plants]) (fig. 3C and
D and supplementary table S1, Supplementary Material
online).

To evaluate the impact of rapidly evolving sites for esti-
mating branching order among streptophytes and land
plants, we further produced 12 shorter alignments by sequen-
tially removing fast-evolving sites in 500 increments using the
OV-sorting method, and the number of total sites of these
shortened data sets ranges from 38,379 to 32,879 (see table 1
and supplementary table S1, Supplementary Material online).
It is striking that the alternative relationship ([Coleochaetales,
Zygnematales], land plants) is recovered for 34,879 and 32,879
matrices in all analyses (table1 and supplementary table S1,
Supplementary Material online; supplementary figs. S1 and S2,
Supplementary Material online). In addition, the relationship
(Coleochaetales, [Zygnematales, land plants]) was rejected at
P = 0.05 for five matrices (i.e., 36,379, 34,879, 34,379, 33,879,
and 33,379 aligned sites) using the approximately unbiased
(AU) test (Shimodaira 2002) (supplementary table S1,
Supplementary Material online). It is noteworthy that none
of our analyses here recovered Charales or Coleochaetales
alone as the sister group to land plants. Moreover, these
two alternative hypotheses were rejected at P = 0.05 using
the AU test for the 45,879 and 36,879 matrices.

By removing the most rapidly evolving sites and using site-
and time-heterogeneous models that reduce both forms
of systematic errors (i.e., LBA and compositional heterogene-
ity), our plastid genomic data indicates that Charales
or Coleochaetales alone are not the sister group to land
plants. Instead, Zygnematales, or a clade containing
Coleochaetales plus Zygnematales, appear to be the closest
living relatives of land plants. This result is also in agreement
with previous nuclear data analyses (Wodniok et al. 2011;
Finet et al. 2012; Laurin-Lemay et al. 2012; Timme et al.
2012; Zhong et al. 2013). One likely explanation for this phy-
logenetic uncertainty is that Coleochaetales, Zygnematales,
and land plants appear to have diverged rapidly during
their early evolution (Stebbins and Hill 1980). It is likely
important in this context that it was not the “coenocytic”
lineage within the Charales that gave rise to land plants.
Nevertheless, it is also important to understand the reasons
for some green algae (e.g., Charalaes, Zygnematales, and
Dasycladales) becoming larger during evolution, and it may
be a key for unlocking the origin of land plants.

Materials and Methods

DNA Sequencing and Data Assembly

Nitella hookeri was collected from Lake Wiritoa, Wanganui,
New Zealand. Spirogyra communis was cultured on BG11
medium (Rippka et al. 1979) from material collected from
the Styx River at the Spencerville Road Bridge, Christchurch,
New Zealand. Coleochaete orbicularis samples were ordered
from the Culture Collection of Algae at The University of
Texas at Austin (http://web.biosci.utexas.edu/utex, last

accessed October 28, 2013) and grown on Modified Bold
3N media. Total genomic DNA (~50 ng) from all three
algae was extracted using the Qiagen Plant DNeasy kit ac-
cording to the manufacturer’s protocols and then sequenced
using Illumina MiSeq platform with 100-bp paired-end reads.
The short reads were filtered with the error probability<0.05
and were then assembled using Velvet (Zerbino and Birney
2008). The contigs were further assembled and compared
with complete chloroplast genomes available using
Geneious software version 5.6 (www.geneious.com, last
accessed October 28, 2013). Protein-coding genes were anno-
tated using DOGMA (Wyman et al. 2004) with manual cor-
rection. Each protein-coding gene from 30 taxa was aligned
using MUSCLE (Edgar 2004) and trimmed to exclude poorly
aligned positions using Gblocks (Castresana 2000) with de-
fault settings. These alignments were concatenated to gener-
ate a matrix of 45,879 sites.

Removal of Most Rapidly Evolving Sites

The OV-sorting method (Goremykin et al. 2010) was used to
rank the full concatenated alignment from the most to least
variable sites based on the measurement of observed
variability of each alignment position. The most variable
sites were then successively removed from the original
matrix, in increments of 500. For each step, two data parti-
tions were obtained: 1) “A” partition that consists of all po-
sitions except the most variable 500, 1,000, . . . . , 9,000 sites
and 2) “B” partition that contains the most variable 500,
1,000, . . . , 9,000 sites. After model fitting was applied to
each partition using ModelTest (Posada and Crandall 1998),
the ML distances for the A and B partitions were calculated, as
well as the uncorrected P-distances for each “B” partition
using PAUP* (Swofford 2002). Two Pearson correlation anal-
yses of pairwise distances were conducted at each step: 1)
correlation of the ML distances for A and B partitions and 2)
correlation of the ML and uncorrected P-distances for B par-
titions. The stopping point for site removal was determined as
the point at which the two correlations showed marked im-
provement (Goremykin et al. 2010) (see fig. 1).

Phylogenetic Analyses

ML analyses were performed using RAxML (Stamatakis 2006)
with the site-homogeneous GTRGAMMA model and the
a posteriori data partitioning strategy. Two site-heteroge-
neous Bayesian analyses were then implemented using 1)
PhyloBayes (Lartillot et al. 2009) under the CAT-GTR model
(Lartillot and Philippe 2004) that accounts for across-site het-
erogeneities, and 2) BayesPhylogenies (Pagel and Meade 2004)
under a “reversible-jump” mixture model (Pagel and Meade
2008) that fits more than one model of sequence evolution to
the data. Two independent MCMC analyses were run for
5,000 cycles in PhyloBayes and 10 million generations in
BayesPhylogenies. Convergence was checked based on time-
series plots of the likelihood scores using Tracer (http://tree.
bio.ed.ac.uk/software/tracer/, last accessed October 28, 2013).
The posterior predictive test was used to measure composi-
tional heterogeneity in PhyloBayes. Two nonhomogeneous
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nonstationary models that account for compositional hetero-
geneity were applied in both ML and Bayesian analyses, i.e., 1)
the nonstationary and nonhomogeneous model of DNA se-
quence evolution (Galtier and Gouy 1998) as implemented in
nhPhyML (Boussau and Gouy 2006) that specifies different
GC contents for each lineage in a likelihood framework, and
2) the CAT-BP model (Blanquart and Lartillot 2008) in
nhPhyloBayes that considers compositional heterogeneity be-
tween lineages by introducing breakpoints along the
branches.

The AU test (Shimodaira 2002) was conducted in scale-
boot (Shimodaira 2008), with the site log-likelihood scores
estimated in RAxML using the a posteriori partitioning
strategy.

Supplementary Material
Supplementary figures S1, S2, and table S1 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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