Davis Laboratory

Welcome to the Davis Lab!

 

Latest News!

Meineke

Meineke accepts position at UC Davis!

June 16, 2019
Please congratulate our very own  Emily Meineke, who has accepted a position as Assistant Professor in Entomology and Neematology at UC Davis. Best wishes, Emily! 
More news

Recent Publications

Emily K. Meineke, Charles C. Davis, and Jonathan Davies. Forthcoming. “The unrealized potential of herbaria for global change biology.” Ecological Monographs, Pp. 1-21.Abstract

 

Plant and fungal specimens in herbaria are becoming primary resources for investigat-

ing how plant phenology and geographic distributions shift with climate change, greatly expanding

inferences across spatial, temporal, and phylogenetic dimensions. However, these specimens contain a

wealth of additional data, including nutrients, defensive compounds, herbivore damage, disease

lesions, and signatures of physiological processes, that capture ecological and evolutionary responses

to the Anthropocene but which are less frequently utilized. Here, we outline the diversity of herbarium

data, global change topics to which they have been applied, and new hypotheses they could inform.

We find that herbarium data have been used extensively to study impacts of climate change and inva-

sive species, but that such data are less commonly used to address other drivers of biodiversity loss,

including habitat conversion, pollution, and overexploitation. In addition, we note that fungal speci-

mens are under-explored relative to vascular plants. To facilitate broader application of plant and fun-

gal specimens in global change research, we consider the limitations of these data and modern

sampling and statistical tools that may be applied to surmount challenges they present. Using a case

study of insect herbivory, we illustrate how novel herbarium data may be employed to test hypotheses

for which few data exist. With the goal of positioning herbaria as hubs for global change research, we

suggest future research directions and curation priorities.

Key words: climate change; extinction; global change; habitat conversion; herbarium; historical data; invasive

species; museum specimens.

 

Jianquan Liu, Charles C Davis, Xiyin Wang, Zhenxiang Xi, Zhiji Qin, Qinfeng Wang, Man Liu, Lanxing Shan, Beibei Jiao, Fanbo Meng, Xingxing Shen, Lei Zhang, Tao Ma, Ying Li, Dafu Ru, Donglei Wang, Leke Lv, Pengchuan Sun, and Yongzhi Yang. 2/24/2020. “Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution.” Nature Plants, 2020, Pp. 1-8.Abstract
Angiosperms represent one of the most spectacular terrestrial radiations on the planet 1, but their early diversification and phylogenetic relationships remain uncertain 2, 3, 4, 5. A key reason for this impasse is the paucity of complete genomes representing early-diverging angiosperms. Here, we present high-quality, chromosomal-level genome assemblies of two aquatic species—prickly waterlily (Euryale ferox; Nymphaeales) and the rigid hornwort (Ceratophyllum demersum; Ceratophyllales)—and expand the genomic representation for key sectors of the angiosperm tree of life. We identify multiple independent polyploidization events in each of the five major clades (that is, Nymphaeales, magnoliids, monocots, Ceratophyllales and eudicots). Furthermore, our phylogenomic analyses, which spanned multiple datasets and diverse methods, confirm that Amborella and Nymphaeales are successively sister to all other …
More