Publications

2013
E. R. Ellwood, S. A. Temple, R. B. Primack, N. L. Bradley, and C. C. Davis. 2013. “Record-breaking early flowering in the eastern United States.” PLoS One, 8, Pp. e53788.Abstract

Flowering times are well-documented indicators of the ecological effects of climate change and are linked to numerous ecosystem processes and trophic interactions. Dozens of studies have shown that flowering times for many spring-flowering plants have become earlier as a result of recent climate change, but it is uncertain if flowering times will continue to advance as temperatures rise. Here, we used long-term flowering records initiated by Henry David Thoreau in 1852 and Aldo Leopold in 1935 to investigate this question. Our analyses demonstrate that record-breaking spring temperatures in 2010 and 2012 in Massachusetts, USA, and 2012 in Wisconsin, USA, resulted in the earliest flowering times in recorded history for dozens of spring-flowering plants of the eastern United States. These dramatic advances in spring flowering were successfully predicted by historical relationships between flowering and spring temperature spanning up to 161 years of ecological change. These results demonstrate that numerous temperate plant species have yet to show obvious signs of physiological constraints on phenological advancement in the face of climate change.

PDF
E. M. Wolkovich, T. J. Davies, H. Schaefer, E. E. Cleland, B. I. Cook, S. E. Travers, C. G. Willis, and C. C. Davis. 2013. “Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change.” Am J Bot, 100, Pp. 1407-1421.Abstract

PREMISE OF THE STUDY: The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique phenological niches and track climate change more closely than native species. METHODS: Here, we use long-term records of species' first flowering dates from fi ve northern hemisphere temperate sites (Chinnor, UK and in the United States, Concord, Massachusetts; Fargo, North Dakota; Konza Prairie, Kansas; and Washington,D.C.) to examine whether invaders have distinct phenologies. Using a broad phylogenetic framework, we tested for differences between exotic and native species in mean annual flowering time, phenological changes in response to temperature and precipitation,and longer-term shifts in first flowering dates during recent pronounced climate change ("flowering time shifts"). KEY RESULTS: Across North American sites, exotic species have shifted flowering with climate change while native species, on average, have not. In the three mesic systems, exotic species exhibited higher tracking of interannual variation in temperature,such that flowering advances more with warming, than native species. Across the two grassland systems, however, exotic species differed from native species primarily in responses to precipitation and soil moisture, not temperature. CONCLUSIONS: Our findings provide cross-site support for the role of phenology and climate change in explaining species' invasions.Further, they support recent evidence that exotic species may be important drivers of extended growing seasons observed with climate change in North America.

PDF
2012
William R. Anderson and Charles C. Davis. 10/2012. “Proposal to conserve the name Mascagnia against Triopterys (Malpighiaceae).” Taxon, 61, 5, Pp. 1124-1125. PDF
Charles C. Davis, Melanie Gunn, and C.Erik Hellquist. 2012. “The botanical teaching legacy of Edward G. Voss at the University of Michigan Biological station.” The Michigan Botanist, 50-51, Pp. 32-41. PDF
Z. Xi, R. K. Bradley, K. J. Wurdack, K. Wong, M. Sugumaran, K. Bomblies, J. S. Rest, and C. C. Davis. 2012. “Horizontal transfer of expressed genes in a parasitic flowering plant.” BMC Genomics, 13, Pp. 227.Abstract

BACKGROUND: Recent studies have shown that plant genomes have potentially undergone rampant horizontal gene transfer (HGT). In plant parasitic systems HGT appears to be facilitated by the intimate physical association between the parasite and its host. HGT in these systems has been invoked when a DNA sequence obtained from a parasite is placed phylogenetically very near to its host rather than with its closest relatives. Studies of HGT in parasitic plants have relied largely on the fortuitous discovery of gene phylogenies that indicate HGT, and no broad systematic search for HGT has been undertaken in parasitic systems where it is most expected to occur. RESULTS: We analyzed the transcriptomes of the holoparasite Rafflesia cantleyi Solms-Laubach and its obligate host Tetrastigma rafflesiae Miq. using phylogenomic approaches. Our analyses show that several dozen actively transcribed genes, most of which appear to be encoded in the nuclear genome, are likely of host origin. We also find that hundreds of vertically inherited genes (VGT) in this parasitic plant exhibit codon usage properties that are more similar to its host than to its closest relatives. CONCLUSIONS: Our results establish for the first time a substantive number of HGTs in a plant host-parasite system. The elevated rate of unidirectional host-to- parasite gene transfer raises the possibility that HGTs may provide a fitness benefit to Rafflesia for maintaining these genes. Finally, a similar convergence in codon usage of VGTs has been shown in microbes with high HGT rates, which may help to explain the increase of HGTs in these parasitic plants.

PDF
Z. Xi, B. R. Ruhfel, H. Schaefer, A. M. Amorim, M. Sugumaran, K. J. Wurdack, P. K. Endress, M. L. Matthews, P. F. Stevens, S. Mathews, and C. C. Davis. 2012. “Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales.” Proc Natl Acad Sci U S A, 109, Pp. 17519-24.Abstract

The angiosperm order Malpighiales includes ~16,000 species and constitutes up to 40% of the understory tree diversity in tropical rain forests. Despite remarkable progress in angiosperm systematics during the last 20 y, relationships within Malpighiales remain poorly resolved, possibly owing to its rapid rise during the mid-Cretaceous. Using phylogenomic approaches, including analyses of 82 plastid genes from 58 species, we identified 12 additional clades in Malpighiales and substantially increased resolution along the backbone. This greatly improved phylogeny revealed a dynamic history of shifts in net diversification rates across Malpighiales, with bursts of diversification noted in the Barbados cherries (Malpighiaceae), cocas (Erythroxylaceae), and passion flowers (Passifloraceae). We found that commonly used a priori approaches for partitioning concatenated data in maximum likelihood analyses, by gene or by codon position, performed poorly relative to the use of partitions identified a posteriori using a Bayesian mixture model. We also found better branch support in trees inferred from a taxon-rich, data-sparse matrix, which deeply sampled only the phylogenetically critical placeholders, than in trees inferred from a taxon-sparse matrix with little missing data. Although this matrix has more missing data, our a posteriori partitioning strategy reduced the possibility of producing multiple distinct but equally optimal topologies and increased phylogenetic decisiveness, compared with the strategy of partitioning by gene. These approaches are likely to help improve phylogenetic resolution in other poorly resolved major clades of angiosperms and to be more broadly useful in studies across the Tree of Life.

PDF
A.M. Ellison, E. D. Butler, E. J. Hicks, R. F. Naczi, P. J. Calie, C. D. Bell, and C. C. Davis. 2012. “Phylogeny and biogeography of the carnivorous plant family Sarraceniaceae.” PLoS One, 7, Pp. e39291.Abstract

The carnivorous plant family Sarraceniaceae comprises three genera of wetland-inhabiting pitcher plants: Darlingtonia in the northwestern United States, Sarracenia in eastern North America, and Heliamphora in northern South America. Hypotheses concerning the biogeographic history leading to this unusual disjunct distribution are controversial, in part because genus- and species-level phylogenies have not been clearly resolved. Here, we present a robust, species-rich phylogeny of Sarraceniaceae based on seven mitochondrial, nuclear, and plastid loci, which we use to illuminate this family's phylogenetic and biogeographic history. The family and genera are monophyletic: Darlingtonia is sister to a clade consisting of Heliamphora+Sarracenia. Within Sarracenia, two clades were strongly supported: one consisting of S. purpurea, its subspecies, and S. rosea; the other consisting of nine species endemic to the southeastern United States. Divergence time estimates revealed that stem group Sarraceniaceae likely originated in South America 44-53 million years ago (Mya) (highest posterior density [HPD] estimate = 47 Mya). By 25-44 (HPD = 35) Mya, crown-group Sarraceniaceae appears to have been widespread across North and South America, and Darlingtonia (western North America) had diverged from Heliamphora+Sarracenia (eastern North America+South America). This disjunction and apparent range contraction is consistent with late Eocene cooling and aridification, which may have severed the continuity of Sarraceniaceae across much of North America. Sarracenia and Heliamphora subsequently diverged in the late Oligocene, 14-32 (HPD = 23) Mya, perhaps when direct overland continuity between North and South America became reduced. Initial diversification of South American Heliamphora began at least 8 Mya, but diversification of Sarracenia was more recent (2-7, HPD = 4 Mya); the bulk of southeastern United States Sarracenia originated co-incident with Pleistocene glaciation, <3 Mya. Overall, these results suggest climatic change at different temporal and spatial scales in part shaped the distribution and diversity of this carnivorous plant clade.

PDF
W. Zhang, E. M. Kramer, and C. C. Davis. 2012. “Similar genetic mechanisms underlie the parallel evolution of floral phenotypes.” PLoS One, 7, Pp. e36033.Abstract

The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently demonstrated that CYCLOIDEA2-like genes (CYC2A and CYC2B) are associated with the development of the stereotypical floral zygomorphy that is critical to this plant-pollinator mutualism. Here, we build on this developmental framework to characterize floral symmetry in three clades of Malpighiaceae that have independently lost their oil bee association and experienced parallel shifts in their floral morphology, especially in regard to symmetry. We show that in each case these species exhibit a loss of CYC2B function, and a strikingly similar shift in the expression of CYC2A that is coincident with their shift in floral symmetry. These results indicate that similar floral phenotypes in this large angiosperm clade have evolved via parallel genetic changes from an otherwise highly conserved developmental program.

PDF
2011
D. E. Soltis, S. A. Smith, N. Cellinese, K. J. Wurdack, D. C. Tank, S. F. Brockington, N. F. Refulio-Rodriguez, J. B. Walker, M. J. Moore, B. S. Carlsward, C. D. Bell, M. Latvis, S. Crawley, C. Black, D. Diouf, Z. Xi, C. A. Rushworth, M. A. Gitzendanner, K. J. Sytsma, Y. L. Qiu, K. W. Hilu, C. C. Davis, M. J. Sanderson, R. S. Beaman, R. G. Olmstead, W. S. Judd, M. J. Donoghue, and P. S. Soltis. 2011. “Angiosperm phylogeny: 17 genes, 640 taxa.” Am J BotAm J Bot, 98, Pp. 704-30.Abstract

PREMISE OF THE STUDY: Recent analyses employing up to five genes have provided numerous insights into angiosperm phylogeny, but many relationships have remained unresolved or poorly supported. In the hope of improving our understanding of angiosperm phylogeny, we expanded sampling of taxa and genes beyond previous analyses. METHODS: We conducted two primary analyses based on 640 species representing 330 families. The first included 25260 aligned base pairs (bp) from 17 genes (representing all three plant genomes, i.e., nucleus, plastid, and mitochondrion). The second included 19846 aligned bp from 13 genes (representing only the nucleus and plastid). KEY RESULTS: Many important questions of deep-level relationships in the nonmonocot angiosperms have now been resolved with strong support. Amborellaceae, Nymphaeales, and Austrobaileyales are successive sisters to the remaining angiosperms (Mesangiospermae), which are resolved into Chloranthales + Magnoliidae as sister to Monocotyledoneae + [Ceratophyllaceae + Eudicotyledoneae]. Eudicotyledoneae contains a basal grade subtending Gunneridae. Within Gunneridae, Gunnerales are sister to the remainder (Pentapetalae), which comprises (1) Superrosidae, consisting of Rosidae (including Vitaceae) and Saxifragales; and (2) Superasteridae, comprising Berberidopsidales, Santalales, Caryophyllales, Asteridae, and, based on this study, Dilleniaceae (although other recent analyses disagree with this placement). Within the major subclades of Pentapetalae, most deep-level relationships are resolved with strong support. CONCLUSIONS: Our analyses confirm that with large amounts of sequence data, most deep-level relationships within the angiosperms can be resolved. We anticipate that this well-resolved angiosperm tree will be of broad utility for many areas of biology, including physiology, ecology, paleobiology, and genomics.

PDF
M. J. Moore, N. Hassan, M. A. Gitzendanner, R.A. Bruenn, M. Croley, A. Vandeventer, J. W. Horn, A. Dhingra, S.F. Brokington, M. Latvis, J. Ramdial, R. Alexandre, A. Piedrahita, Z. Xi, C. C. Davis, P. S. Soltis, and D. E. Soltis. 2011. “Phylogenetic analysis of the plastid inverted repeat for 244 species: insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region.” Int J Plant Sci, 172, Pp. 541-558. PDF
B. R. Ruhfel, V. Bittrich, C. P. Bove, M. H. Gustafsson, C. T. Philbrick, R. Rutishauser, Z. Xi, and C. C. Davis. 2011. “Phylogeny of the clusioid clade (Malpighiales): evidence from the plastid and mitochondrial genomes.” Am J BotAm J Bot, 98, Pp. 306-25.Abstract

PREMISE OF THE STUDY: The clusioid clade includes five families (i.e., Bonnetiaceae, Calophyllaceae, Clusiaceae s.s., Hypericaceae, and Podostemaceae) represented by 94 genera and approximately 1900 species. Species in this clade form a conspicuous element of tropical forests worldwide and are important in horticulture, timber production, and pharmacology. We conducted a taxon-rich multigene phylogenetic analysis of the clusioids to clarify phylogenetic relationships in this clade. METHODS: We analyzed plastid (matK, ndhF, and rbcL) and mitochondrial (matR) nucleotide sequence data using parsimony, maximum likelihood, and Bayesian inference. Our combined data set included 194 species representing all major clusioid subclades, plus numerous species spanning the taxonomic, morphological, and biogeographic breadth of the clusioid clade. KEY RESULTS: Our results indicate that Tovomita (Clusiaceae s.s.), Harungana and Hypericum (Hypericaceae), and Ledermanniella s.s. and Zeylanidium (Podostemaceae) are not monophyletic. In addition, we place four genera that have not been included in any previous molecular study: Ceratolacis, Diamantina, and Griffithella (Podostemaceae), and Santomasia (Hypericaceae). Finally, our results indicate that Lianthus, Santomasia, Thornea, and Triadenum can be safely merged into Hypericum (Hypericaceae). CONCLUSIONS: We present the first well-resolved, taxon-rich phylogeny of the clusioid clade. Taxon sampling and resolution within the clade are greatly improved compared to previous studies and provide a strong basis for improving the classification of the group. In addition, our phylogeny will form the foundation for our future work investigating the biogeography of tropical angiosperms that exhibit Gondwanan distributions.

PDF
C. C. Davis and H. Schaefer. 2011. “Plant evolution: pulses of extinction and speciation in gymnosperm diversity.” Curr BiolCurr Biol, 21, Pp. R995-8.Abstract

Living gymnosperms represent the survivors of ancient seed plant lineages whose fossil record reaches back 270 million years. Two recent studies find that recent pulses of extinction and speciation have shaped today's gymnosperm diversity, contradicting the widespread assumption that gymnosperms have remained largely unchanged for tens of millions of years.

PDF
2010
C. C. Davis, E.J. Edwards, and M. J. Donoghue. 2010. “A clades-eye view of global climate change.” In Evolution Since Darwin: The First 150 Years, edited by M.A. Bell, D. J. Futuyma, W.F. Eanes, and J.S. Levinton, Pp. 623-627. Sunderland, Massachusetts: Sinauer. PDF
C. C. Davis and W. R. Anderson. 2010. “A complete generic phylogeny of Malpighiaceae inferred from nucleotide sequence data and morphology.” Am J Bot, 97, Pp. 2031-48.Abstract

PREMISE OF THE STUDY: The Malpighiaceae include approximately 1300 tropical flowering plant species in which generic definitions and intergeneric relationships have long been problematic. The goals of our study were to resolve relationships among the 11 generic segregates from the New World genus Mascagnia, test the monophyly of the largest remaining Malpighiaceae genera, and clarify the placement of Old World Malpighiaceae. * METHODS: We combined DNA sequence data for four genes (plastid ndhF, matK, and rbcL and nuclear PHYC) from 338 ingroup accessions that represented all 77 currently recognized genera with morphological data from 144 ingroup species to produce a complete generic phylogeny of the family. * KEY RESULTS AND CONCLUSIONS: The genera are distributed among 14 mostly well-supported clades. The interrelationships of these major subclades have strong support, except for the clade comprising the wing-fruited genera (i.e., the malpighioid+Amorimia, Ectopopterys, hiraeoid, stigmaphylloid, and tetrapteroid clades). These results resolve numerous systematic problems, while others have emerged and constitute opportunities for future study. Malpighiaceae migrated from the New to Old World nine times, with two of those migrants being very recent arrivals from the New World. The seven other Old World clades dispersed much earlier, likely during the Tertiary. Comparison of floral morphology in Old World Malpighiaceae with their closest New World relatives suggests that morphological stasis in the New World likely results from selection by neotropical oil-bee pollinators and that the morphological diversity found in Old World flowers has evolved following their release from selection by those bees.

PDF
C. G. Willis, B. R. Ruhfel, R. B. Primack, A. J. Miller-Rushing, J. B. Losos, and C. C. Davis. 2010. “Favorable climate change response explains non-native species' success in Thoreau's woods.” PLoS One, 5, Pp. e8878.Abstract

Invasive species have tremendous detrimental ecological and economic impacts. Climate change may exacerbate species invasions across communities if non-native species are better able to respond to climate changes than native species. Recent evidence indicates that species that respond to climate change by adjusting their phenology (i.e., the timing of seasonal activities, such as flowering) have historically increased in abundance. The extent to which non-native species success is similarly linked to a favorable climate change response, however, remains untested. We analyzed a dataset initiated by the conservationist Henry David Thoreau that documents the long-term phenological response of native and non-native plant species over the last 150 years from Concord, Massachusetts (USA). Our results demonstrate that non-native species, and invasive species in particular, have been far better able to respond to recent climate change by adjusting their flowering time. This demonstrates that climate change has likely played, and may continue to play, an important role in facilitating non-native species naturalization and invasion at the community level.

PDF
W. Zhang, E. M. Kramer, and C. C. Davis. 2010. “Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism.” Proc Natl Acad Sci U S A, 107, Pp. 6388-93.Abstract

The evolution of floral zygomorphy is an important innovation in flowering plants and is thought to arise principally from specialization on various insect pollinators. Floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to be caused by selection by its oil-bee pollinators. We sought to characterize the genetic basis of floral zygomorphy in Malpighiaceae by investigating CYCLOIDEA2-like (CYC2-like) genes, which are required for establishing symmetry in diverse core eudicots. We identified two copies of CYC2-like genes in Malpighiaceae, which resulted from a gene duplication in the common ancestor of the family. A likely role for these loci in the development of floral zygomorphy in Malpighiaceae is demonstrated by the conserved pattern of dorsal gene expression in two distantly related neotropical species, Byrsonima crassifolia and Janusia guaranitica. Further evidence for this function is observed in a Malpighiaceae species that has moved to the paleotropics and experienced coincident shifts in pollinators, floral symmetry, and CYC2-like gene expression. The dorsal expression pat-tern observed in Malpighiaceae contrasts dramatically with their actinomorphic-flowered relatives, Centroplacaceae (Bhesa paniculata) and Elatinaceae (Bergia texana). In particular, B. texana exhibits a previously undescribed pattern of uniform CYC2 expression, suggesting that CYC2 expression among the actinomorphic ancestors of zygomorphic lineages may be much more complex than previously thought. We consider three evolutionary models that may have given rise to this patterning, including the hypothesis that floral zygomorphy in Malpighiaceae arose earlier than standard morphology-based character reconstructions suggest.

PDF
C. C. Davis, C. G. Willis, R. B. Primack, and A. J. Miller-Rushing. 2010. “The importance of phylogeny to the study of phenological response to global climate change.” Philos Trans R Soc Lond B Biol Sci, 365, Pp. 3201-13.Abstract

Climate change has resulted in major changes in the phenology--i.e. the timing of seasonal activities, such as flowering and bird migration--of some species but not others. These differential responses have been shown to result in ecological mismatches that can have negative fitness consequences. However, the ways in which climate change has shaped changes in biodiversity within and across communities are not well understood. Here, we build on our previous results that established a link between plant species' phenological response to climate change and a phylogenetic bias in species' decline in the eastern United States. We extend a similar approach to plant and bird communities in the United States and the UK that further demonstrates that climate change has differentially impacted species based on their phylogenetic relatedness and shared phenological responses. In plants, phenological responses to climate change are often shared among closely related species (i.e. clades), even between geographically disjunct communities. And in some cases, this has resulted in a phylogenetically biased pattern of non-native species success. In birds, the pattern of decline is phylogenetically biased but is not solely explained by phenological response, which suggests that other traits may better explain this pattern. These results illustrate the ways in which phylogenetic thinking can aid in making generalizations of practical importance and enhance efforts to predict species' responses to future climate change.

PDF
2009
K. J. Wurdack and C. C. Davis. 2009. “Malpighiales phylogenetics: Gaining ground on one of the most recalcitrant clades in the angiosperm tree of life.” Am J Bot, 96, Pp. 1551-70.Abstract

The eudicot order Malpighiales contains approximately 16000 species and is the most poorly resolved large rosid clade. To clarify phylogenetic relationships in the order, we used maximum likelihood, Bayesian, and parsimony analyses of DNA sequence data from 13 gene regions, totaling 15604 bp, and representing all three genomic compartments (i.e., plastid: atpB, matK, ndhF, and rbcL; mitochondrial: ccmB, cob, matR, nad1B-C, nad6, and rps3; and nuclear: 18S rDNA, PHYC, and newly developed low-copy EMB2765). Our sampling of 190 taxa includes representatives from all families of Malpighiales. These data provide greatly increased support for the recent additions of Aneulophus, Bhesa, Centroplacus, Ploiarium, and Rafflesiaceae to Malpighiales; sister relations of Phyllanthaceae + Picrodendraceae, monophyly of Hypericaceae, and polyphyly of Clusiaceae. Oxalidales + Huaceae, followed by Celastrales are successive sisters to Malpighiales. Parasitic Rafflesiaceae, which produce the world's largest flowers, are confirmed as embedded within a paraphyletic Euphorbiaceae. Novel findings show a well-supported placement of Ctenolophonaceae with Erythroxylaceae + Rhizophoraceae, sister-group relationships of Bhesa + Centroplacus, and the exclusion of Medusandra from Malpighiales. New taxonomic circumscriptions include the addition of Bhesa to Centroplacaceae, Medusandra to Peridiscaceae (Saxifragales), Calophyllaceae applied to Clusiaceae subfamily Kielmeyeroideae, Peraceae applied to Euphorbiaceae subfamily Peroideae, and Huaceae included in Oxalidales.

PDF
C. G. Willis, B. Ruhfel, R. B. Primack, A. J. Miller-Rushing, and C. C. Davis. 2009. “Reply to McDonald et al.: Climate change, not deer hebivory, has shaped species decline in Concord, Massachusetts.” Proc Natl Acad Sci U S A, 106, Pp. E29. PDF
H. Wang, M. J. Moore, P. S. Soltis, C. D. Bell, S. F. Brockington, R. Alexandre, C. C. Davis, M. Latvis, S. R. Manchester, and D. E. Soltis. 2009. “Rosid radiation and the rapid rise of angiosperm-dominated forests.” Proc Natl Acad Sci U S A, 106, Pp. 3853-8.Abstract

The rosid clade (70,000 species) contains more than one-fourth of all angiosperm species and includes most lineages of extant temperate and tropical forest trees. Despite progress in elucidating relationships within the angiosperms, rosids remain the largest poorly resolved major clade; deep relationships within the rosids are particularly enigmatic. Based on parsimony and maximum likelihood (ML) analyses of separate and combined 12-gene (10 plastid genes, 2 nuclear; >18,000 bp) and plastid inverted repeat (IR; 24 genes and intervening spacers; >25,000 bp) datasets for >100 rosid species, we provide a greatly improved understanding of rosid phylogeny. Vitaceae are sister to all other rosids, which in turn form 2 large clades, each with a ML bootstrap value of 100%: (i) eurosids I (Fabidae) include the nitrogen-fixing clade, Celastrales, Huaceae, Zygophyllales, Malpighiales, and Oxalidales; and (ii) eurosids II (Malvidae) include Tapisciaceae, Brassicales, Malvales, Sapindales, Geraniales, Myrtales, Crossosomatales, and Picramniaceae. The rosid clade diversified rapidly into these major lineages, possibly over a period of <15 million years, and perhaps in as little as 4 to 5 million years. The timing of the inferred rapid radiation of rosids [108 to 91 million years ago (Mya) and 107-83 Mya for Fabidae and Malvidae, respectively] corresponds with the rapid rise of angiosperm-dominated forests and the concomitant diversification of other clades that inhabit these forests, including amphibians, ants, placental mammals, and ferns.

PDF

Pages